A Novel Active Filter for Mitigation of EMI and Other Adverse Effects of PWM Inverter-Fed AC Motor

Abdolreza Esmaeli

ABSTRACT

This paper presents novel active filter for mitigation electromagnetic interference (EMI) and other adverse effects of pulse width modulation (PWM) inverter-fed AC motor system. An active filter proposed and devised for this system is characterized by sophisticated connection of two small separate filters, capable of mitigating all the adverse effects. This paper provides high frequency models of PWM inverter, rectifier, DC link, induction motor and long cable. The configuration and design procedure of the proposed filter is presented. The whole system is modeled and simulated by commercially available simulation software. A practical system with EMI measurement system have been suggested to test designed equipment ability in emitting EMI and other adverse effects to comply with electromagnetic compatibility (EMC) standards. The simulation results are verified by experimental results, which show the reduction characteristics of the shaft voltage, bearing current, common mode current, leakage current and EMI.

KEYWORDS
Electromagnetic compatibility, Electromagnetic Interference, Active filter, modeling, electrical machine, PWM inverter

1. INTRODUCTION

Conducted electromagnetic emissions currently produced by adjustable-speed AC drive systems are becoming the main interested subject for researchers and industry. Gary L. et al. reviews several main topics on electromagnetic interference (EMI) issues of modern pulse-width modulation (PWM) AC drives [1], and groups them into two aspects: conducted noise generation/propagation mechanism and drive system installation analysis. These are quite important guidelines to both manufactures and end users, although they are mainly based on realistic observations and expertise [2].

In addition to EMI, PWM AC drive systems have other adverse effects as common mode (CM) voltage [3], [4], [5] bearing current [6], [7], leakage current [8], shaft voltage [9] and over-voltage [10] in motor terminal. The current researchers up till now have only provided solutions for one or two isolated side effects and no collective solutions have yet been proposed [11], [12]. Simple filter model and induction motor model also presented in [13], [14]. A typical AC drive unit, which is commonly called an inverter, consists of a front-end line frequency AC-to-DC converter (rectifier), a DC bus with a capacitor filter and an output switch-mode DC-to-AC inverter, as shown in Figure 1. The rectifier together with the filter provides a filtered unregulated DC voltage on the DC bus. The solid-state devices of the DC-to-AC inverter are controlled under switch-mode in order to reduce the I²R power loss. The output waveforms applied to the winding of the induction motor are square pulses with a modulated pulse-width (depending on the desired motor speed/voltage), which are different from the sinusoidal waveforms for which the AC motors were designed.

The size and cost of EMI filter components are important considerations in many power applications. One approach in reducing passive filter component size is the use of an active EMI filter. An active EMI filter replaces large passive components with smaller passives and some active control circuitry. Techniques exist to either reduce the amount of generating noise, or improve the performance of the passive filter.

This paper discusses the active technique mitigation of EMI and other adverse effects of PWM inverter AC drive system. PWM inverter fed AC motor drive system included motors, AC drive system (rectifier and PWM inverter system), leads, and other possible units that are used to develop one complete motor system to improve performances is constructed and tested with and without proposed active filter. The whole system is simulated by SABER simulator [15]. The simulation platform SABER is chosen because of the robust modeling engine, the ease of integrating mechanical components, and the large...
library of existing models for a wide range of electrical components. SABER provides a good platform for device performance prediction in a system environment and also reliable data for EMI noise determinations.

This paper includes seven parts. First, introduction; second, modeling and filter design is the next. Part 4 gives simulated results based on the presented models and the parameters of 4 kW induction motor system. Part 5 gives the experimental results and finally the conclusion and references are given in part 6 and 7 respectively.

2. MODELING

For an accurate high frequency (HF) model of AC motor drive systems, the HF parasitic current paths should take into account [16]. Figure 1 shows the Conventional adjustable speed drive system without EMI filter. HF models of different parts of Figure 1 presented in the following.

![Figure 1: Conventional adjustable speed drive system](https://www.SID.ir)

A. Rectifier and DC Link

The HF equivalent circuit of rectifier and DC link is shown in Figure 2. As an important role of parasitic capacitances between anode of diodes and ground in the HF current paths is considered in HF model of three-phase rectifier, CP1 is the parasitic capacitance of upper and CP2 is the parasitic capacitance of lower diodes in the rectifier shown in Figure 2. Rp and Lp are resistance and inductance parasitic value of DC capacitor of DC link.

B. Inverter

The three-phase inverter consisting of six IGBTs and six soft recovery diodes is used to drive the motor. The equivalent circuit of the three-phase voltage source inverter (VSI) is obtained by an extension of the switching cell. The inverter is composed of three legs, each of which consisting of two power IGBTs with parallel freewheeling diodes. The HF circuit model of the inverter system must take the main parasitic components of the inverter into account. Stray inductions of the connecting wires and parasitic capacitances between IGBT and heatsink are considered in the model. HF equivalent circuit of one leg of three-phase IGBT inverter is shown in Figure 3.

Ls is stray inductance of the connecting wires. Cp is stray capacitance of the collector and grounded heatsink. Between the collector and the heatsink, there appears a stray capacitance that affects principally leakage current generation. LE and LC are parasitic inductances of the emitter and collector of IGBT Model. Differential conducted emissions are affected by these inductances.

Ls is the a-phase line parasitic inductance and L1, L2, L3 are the line parasitic inductances from base and collector to PWM sources. Also the heatsink is modelled by one inductor (Lh) and one resistor (Rh). The value of the parasitic elements approached from RLC meter and devices datasheets for rectifier, DC link and inverter are presented in Table 1. All impedance measurements were performed with a resistance, inductance, and capacitance (RLC) meter with a measurement range of 75 kHz–30 MHz, following a proper calibration via a short-open procedure [17].

| Table 1: THE HF PARAMETERS VALUE OF RECTIFIER, DC LINK AND INVERTER |
|---------------------|---------------------|---------------------|---------------------|---------------------|
| Cp1 | Cp2 | Rp | Lp | Cp |
| 75 pF | 31 pF | 2.1 Ω | 25 nH | 2.2 mF |
| L1, L3 | L2, L4 | Ls, Ld | C | Lh |
| 30 nH | 50 nH | 15 nH | 125 µH | 8 Ω |
| Lc | | | 220 pF | |

C. Induction Motor

A novel induction motor’s model is shown in Figure 4. R, L and C are distributing parameters representing the HF coupling between the stator windings and rotor assembly.

Because of the partial insulation effect of the bearing grease and the electrical discharge machining (EDM) effect between the bearing balls and races, the motor bearings can be modeled as a capacitance Cb in parallel to a non-linear resistive circuit (Rb), and series with bearing ball and race contact resistance Rb. The bearing current, Ib, is flowing through the modeled wire impedance of measuring bearing current (Lw and Rw). Cg is the capacitance present across the stator and the motor laminations across the motor air gap. The coupling between the stator windings and the frame (stator) is considered as inductance (Lsg), resistance (Rsg) and capacitance (Csg) since it mainly contributes to the total leakage current into the ground. Frame is modeled as resistance of Rg to ground. The values of HF parameters model of induction motor are presented in Table 2. By considering Figure1, the common mode voltage can be calculated by the following equation:

\[
V_{CM} = \frac{V_{AG} + V_{BG} + V_{CG}}{3} = \frac{V_{AO} + V_{BO} + V_{CO}}{3} = V'_{CM} + V'_{CO} = V'_{CM} + V'_{CL}
\]

where VAG, VBG, VCG, VAO, VBO, VCO represent the electric potential of point A, B, C, respectively. VAG, VBG, VCO represent the voltage across A, B, C and O respectively.

To simplify the equation 1 can be written as (2) using switching function S\(i\) (i=A, B, C), S\(i\)=1 representing...
bottom switch being on.

\[V_{CM} = \frac{(S_A + S_B + S_C) \cdot jU_d}{6} + V_{OG} = \left\{ \begin{array}{ll} \frac{U_d}{2} + V_{OG} & \text{if } U_d \\ \frac{U_d}{2} - V_{OG} & \text{if } U_d < 0 \end{array} \right. \]

where \(V_{OG} \) is the electric potential of point O.

\[(2) \]

![Figure 2. HF equivalent circuit of rectifier and DC link](image)

![Figure 3. HF equivalent circuit of one leg of three-phase inverter](image)

By considering the simplified model of induction motor shown in Figure 5 shaft voltage can be calculated by (3).

\[V_{sh} = V_{CM} \times \frac{Z_{sr}}{3 + Z_{rg}} \]

where \(Z_{sr} \) is the impedance between the stator windings and rotor and impedance between the rotor and frame is \(Z_{rg} \) as defined in the following:

\[Z_{sr} = \frac{Z_s \times Z_g}{Z_s + Z_g} , \quad Z_{rg} = R_g + J L_\omega + \frac{1}{J C_\omega} \]

where \(Z_s \) and \(Z_g \) calculated as

\[Z_s = \frac{1}{J C_\omega} \]

\[Z_g = \frac{1}{J C_\omega} \]

So the bearing current can be calculated by (7).

\[I_s = \frac{V}{Z_g} \]

and leakage current can be developed as:

\[(8) \]

\[I_s = \frac{V_{CM}}{Z_{sr}} + \frac{V_s + V_g}{Z_t + Z_s} \]

where \(Z_{sr} \) is the impedance between the stator winding and ground.

\[(9) \]

![Figure 4. The HF model of induction motor](image)

![Figure 5. Simplified model of induction motor](image)

D. Long Cables

The cable is modeled using the 20-stages \(\pi \) connection model as shown in Figure 6 [16]. The parameters of the cable model are therefore calculated by analyzing the behavior of the short-circuit impedance \(Z_{sc} \) and open-circuit impedance \(Z_{oc} \) over a broad range of frequency. The cable model series parameters \((R \text{ and } L) \) are associated to the behavior of the short-circuit impedance, while the parallel parameter \((C) \) is associated to the behavior of the open-circuit impedances.

Equations (10), (11) and (13) are suggested to estimate the parameters of the cable model per-unit length, in which \(f_{low} \) and \(f_{high} \) are the lowest (100 Hz) and the highest (2 MHz) test frequencies respectively in the impedance measurements [16].

The values of the model’s parameter are described per unit length (meter) in Table 3. For 20-stages of 100 meters cables, these values should multiply by 5.
\[R = \frac{2}{3} \text{Real}[Z_\omega]_{R_{\omega}} \]
\[L = \frac{\left(2\pi f_{\text{high}}\right)^2}{3} \text{Image}[Z_\omega]_{R_{\omega}} \]
\[C = \left(2\pi f_{\text{high}}\right) \left(\frac{\text{Real}[Z_\omega]_{v_{\text{out}}}}{\text{Image}[Z_\omega]_{v_{\text{out}}}}\right) \left(2\text{Real}[Z_\omega]_{v_{\text{out}}} - 1\right) \left(\frac{\text{Image}[Z_\omega]_{v_{\text{out}}}}{\text{Real}[Z_\omega]_{v_{\text{out}}}}\right)^2 \]
\[(10) \]
\[(11) \]
\[(12) \]

TABLE 3
HF PARAMETER VALUES OF LONG MOTOR CABLE

<table>
<thead>
<tr>
<th>HF Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>2.8685 \times 10^{-7} H/m</td>
</tr>
<tr>
<td>R</td>
<td>0.0421 Ω/m</td>
</tr>
<tr>
<td>C</td>
<td>9.0867 \times 10^{-11} F/m</td>
</tr>
</tbody>
</table>

Figure 6. Twenty-stage serial-connected three-phase circuit of shield power cable model

As shown in Figure 1, motor terminal voltages with long cable can be described as the following:

\[V_{cm} = \frac{V_{A0} + V_{G0} + V_{C0}}{3} = \frac{V_{A0} + V_{G0} + V_{C0}}{3} + V_{OG} \]
\[(13) \]

As it is known, motor terminal voltages will approximately double approximately with long cable due to voltage reflection so common mode voltage can be described by (14) [18]

\[V_{cm} = \frac{V_{A0} + V_{G0} + V_{C0}}{3} + V_{OG} = \frac{2(V_{A0} + V_{G0} + V_{C0})}{3} + V_{OG} = 2V_{cm} + V_{OG} \]

\[(14) \]

\[2V_{cm} + V_{OG} = \left\{ \begin{array}{ll} \pm U_0 \pm V_{OG} \\ \pm \frac{U_0}{3} + V_{OG} \end{array} \right. \]

By comparing (1) and (14), it is indicated that the common mode voltages at motor terminal with long cable also doubles. So it is very important to suppress common-mode voltage when long cable is used.

By simulation the AC motor drive systems with and without the proposed filter, the effect of proposed filter can be evaluated as discussed in the next sections.
then the compensate scheme of ACC can be shown in Figure 9.

Figure 9 shows a CM equivalent circuit for the drive system. Here, \(V_{CM} \) means CM voltage produced by the inverter, and \(C_{CM}, L_{CM} \) and \(R_{CM} \) are stray capacitance, inductance and resistance components included in the CM circuit of the drive system, respectively.

The emitter follower circuit detects the CM voltage at the inverter output terminals, and produces the same voltage to the CM transformer. The transformer superimposes the CM voltage on the inverter outputs. As a result, the ACC can cancel the common-mode voltage generated by the inverter.

By considering Figure 7 and Figure 9 the following equations can be presented:

\[
\begin{align*}
 V'_{CM} & = \beta L_z(s)L_{3}s \\
 V_{CM} & = \frac{Z_1(s)}{3}I_z(s) + V'_{CM} \\
 V_{CM} & = V_{CM, out} + \beta MsI_z(s)
\end{align*}
\]

Then the insertion loss effect \(IL(s) \) of ACC can be obtained from (16).

\[
IL(s) = \frac{V_{CM, out}}{V_{CM}} = \frac{s\beta L_2 - \beta Ms + Z_1(s)/3}{s\beta L_2 + Z_1(s)/3}
\]

After eliminating CM voltage, the main source of the conducted EMI noise is CM current produced by the converter. The main work is how to reduce the conducted current from power source. Using another filter composed of inductor of \(L_3 \) at rectifier input, three Y-connected capacitors \(C_3 \) and a damping resistor \(R \) connected between the motor neutral point and rectifier input could complete the EMI reduction processing. This filter requires access to the ungrounded motor neutral point.

A. Design of the Filter Parameters

During the course of designing the current compensate filter, proper parameters of transistor and CM transformer should carefully be selected, especially for the transistor. The transistor wide bandwidth, high voltage resistance, low loss and high gain are required in the filter. The impedance \(Z_z \) and \(Z_1 \) in ACC should be composed of a resistor and a capacitor in series in order to avoid resonance. So (17) can be changed into (18).

\[
IL(s) = 3C_z(\beta L_2 - \beta M)s^2 + R_3C_3 s + 1
\]

\[
3\beta L_2C_3 s^2 + R_3C_3 s + 1
\]

where \(R_3 \) and \(C_3 \) are resistance and capacitance of the impedance \(Z_3 \) respectively. In the process of CM voltage suppression, the insertion loss function \(IL(s) \) of ACC should have low-pass characteristics, so from (18):

\[
\beta L_2 - \beta M = 0
\]

The relation between \(L_1 \) and \(L_2 \) should be limited by the following equation:

\[
k = \sqrt{\frac{L_3}{L_1}}
\]

Since the primary frequency of CM voltage produced by the inverter is focused on switching frequency and its multiples. So the resonance frequency of the CM voltage filter \(f_0 \) should be much lower than the switching frequency \(f_s \). The resonance frequency \(f_0 \) is obtained from (18):\n
\[
\omega_0 = 2\pi f_0 = \frac{1}{\sqrt{3\beta L_2C_3}} < < 2\pi f_s
\]

According to the experiment and experience, \(C_3=180\text{pf} \). The inductances and resistors can be calculated by the following Equations:

\[
L_2 \gg \frac{1}{3\beta C_3(2\pi f_s)^2}
\]

\[
L_1 = \frac{L_2}{k^2}
\]

\[
R_x = 2c\sqrt{\frac{3\beta L_2}{C_3}}
\]
where ς is the damping ratio.

4. Simulation Results

SABER software was used for the simulation, which involved inserting the equivalent circuit of the presented models of this paper. The simulation results of the PWM inverter fed AC motor drive system when just ACC (Just one part of the proposed filter of Figure 7) is connected to the system are shown in Figure 10 and 12. Conducted EMI spectrum of PWM inverter fed AC motor drive system with the ACC is shown in Figure 10, which couldn’t satisfy the EMI regulation. However conducted EMI just in low frequency is higher than the limit.

CISPR 22 regulation has been used globally for many years to determine compliance of electrical machine drive system with applicable limits as electromagnetic compatibility (EMC) regulation. Many economies like the European Union, Japan, Australia and New Zealand have adopted CISPR 22 into locally applicable standards. Other countries also accepted this regulation as international regulations. In this paper CISPR 22 regulations are considered. Limit of conducted emission of CISPR 22 (last version: 2004) for conducted emissions is 79 dBV/µV in the range of frequency 0.15-0.5 MHz and 73 dBV/µV in the range of frequency 0.5-30 MHz that is drawn in conducted EMI spectrum of simulations results (Figures 10 and 12). These limits are similar to other standards and regulations such as FCC class A limits (USA standards), EN 55022, IEC 61000 (European standards) and other acceptable standards.

Figure 11 shows shaft voltage (V_{sh}), bearing current (I_b) and CM current (I_{cm}) for PWM inverter fed AC motor drive system with the ACC.

As shown in Figure 11 peak value of shaft voltage by applying filter is reduced from 17 volts (without filter) to 4 volt. Also bearing current and CM current reduced to 3 mA and 1A (peak value) respectively, when they had higher value without ACC. CM current is reduced to 1/4 of its value of without filter and bearing current is reduced to 1/10 of its original value by the ACC.

When the additional filter included L_3, R and C, connected between rectifier input and motor neutral point harmonic currents in the AC side of the PWM rectifier is eliminated. As discussed the effect of this additional loop in PWM inverter fed ac motor drive system to reduce CM current in the system, its effect in the new proposed filter shown in Figure 7, illustrated in Figure 12 and 13. Figure 12 shows conducted EMI spectrum of PWM inverter fed AC motor drive system with the proposed filter of Figure 7. The proposed EMI filter reduced conducted EMI to satisfy EMC regulations. As shown in Figure 12 conducted EMI of PWM inverter fed AC motor drive system connected to the proposed EMI filter met regulations. Comparison of Figure 10 and Figure 12 shows the effect of additional filter to the ACC to reduce conducted EMI.

Figure 8 shows shaft voltage (V_{sh}), bearing current (I_b) and CM current (I_{cm}) for PWM inverter fed AC motor drive system with the proposed filter (Figure 7). When the new proposed filter is connected, the shaft voltage, bearing and CM currents are suppressed almost perfectly as shown in Figure 13. As shown in Figure 13 shaft voltage reduced drastically and the peak value of the shaft voltages reach 50 mV at the maximum and also bearing current maximum value is several microamperes where these values cannot disturb system or be the cause of bearing damaging. CM current also is reduced, especially when we compare Figure 13 and Figure 11, the effects of additional filter can be shown.
5. Experimental Results

The proposed conducted EMI filter shown in Figure 7 is connected to the PWM inverter AC motor drive system. The test system as illustrated in Fig. 16, shows the 4 kW induction motor, 6 kW PWM inverter drive system, line impedance stabilization networks (LISN), EMI measurement system, proposed active filter and other measuring system for evaluating the adverse effects in the system. Standard regulations call for the utilization of LISN to be placed between AC power supply and the equipment under test (EUT) for measuring EMI.

This filter involves one ACC and one passive filter composed of three capacitors, one resistance and one inductor. After the proposed filter connected to the system, the results show that the adverse effects are reduced successfully. The results of elimination CM voltage and shaft voltage are presented in Figure 17. The measured CM voltage in motor terminals shows that the CM voltage is almost mitigated and the measured shaft voltage is eliminated. The main reason of the CM voltage reduction is the ACC employed between motor terminals and inverter output. The shaft voltage due to the CM voltage reduction and the connected passive filter between motor neutral point and rectifier input, shaft voltage is eliminated. Similarly bearing current and CM current are eliminated as shown in Figure 18.

The effect of active/passive filter on EMI is shown in Figure 19. The experimental results after employing the passive/active filter in the system have good agreement with the simulation results presented in simulation. Figures 17, 18 and 19 show that proposed filter could reduce all the adverse effects drastically. Especially this filter has better performance in reducing the CM voltage than single passive filter so it can reduce shaft voltage more than passive filter.

Considering the experimental results of both parts of proposed filter can be concluded that passive filter connected between motor neutral point and rectifier input has important role in reducing CM current.

Simulation and experimental results have good agreement as shown in Figure 12 and Figure 19 for EMI, and in Figures 13, 15, 17 and 18 for other adverse effects of PWM inverter.

Figure 16. Experimental system to evaluate the adverse effects with filter
Experimental results have good agreement with simulation results that the proposed filter is effective and valuable in eliminating the adverse effects of PWM inverter in motor drive system. The proposed EMI filter reduced conducted EMI to satisfy EMC regulations (CISPR 22 regulation).

7. REFERENCES
