لینک‌های مفید

- عضویت در خبرنامه
- کارگاه‌های آموزشی
- سرویس ترجمه تخصصی
- فیلم‌های آموزشی
- بلاگ مرکز اطلاعات علمی
- سرویس‌های ویژه

40% تخفیف به مناسبت سالروز تاسیس مرکز اطلاعات علمی
Size-Dependent Vibration Problem of Two Vertically-Aligned Single-Walled Boron Nitride Nanotubes Conveying Fluid in Thermal Environment Via Nonlocal Strain Gradient Shell Model

P. Roodgar Saffari 1, M. Fakhraie 1,* , M.A. Roudbari 2

1Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
2School of Engineering, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia

Received 21 February 2021; accepted 11 April 2021

ABSTRACT
The free vibration behavior of two fluid-conveying vertically-aligned single-walled boron nitride nanotubes are studied in the present paper via the nonlocal strain gradient piezoelectric theory in conjunction with the first-order shear deformation shell assumption in thermal environments. It is supposed that the two adjacent boron nitride nanotubes are coupled with each other in the context of linear deformation by van der Waals interaction according to Lennard–Jones potential function. To achieve a more accurate modeling for low-scale structures, both hardening and softening effects of materials are considered in the nonlocal strain gradient approach. The motion equations and associated boundary conditions are derived by means of Hamilton’s variational principle, then solved utilizing differential quadrature method. Numerical studies are done to reveal the effect of different boundary conditions, size scale parameters, aspect ratio, inter-tube distance, and temperature change on the variations of dimensionless eigenfrequency and critical flow velocity.

© 2021 IAU, Arak Branch. All rights reserved.

Keywords: Nonlocal strain gradient; Fluid-conveying boron nitride nanotube; Free vibration; Piezoelectric cylindrical shell; Thermal environment.

1 INTRODUCTION

As a consequence of providing attractive mechanical, electrical and physical properties, nanotubes (NTs) have been utilized for various advanced applications in nanostructures [1]. Undoubtedly, one of the most notable carbon allotropes is carbon nanotube (CNT) including rolled-up single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) [2, 3]. Boron nitride (BN) is a chemically resilient refractory mixture of boron and nitrogen atoms which has numerous outstanding characteristics including a high elastic modulus, and noteworthy efficiency in heat transfer fields [4, 5]. An advantages of boron nitride nanotubes (BNNTs) over CNT is

*Corresponding author. Tel.: +98 9111321248.
E-mail address: fakhraie@liau.ac.ir (M.Fakhraie)
that BNNTs exhibit strong piezoelectric properties which makes them an interesting choice in nano-electromechanical systems (NEMS) [6]. Some researchers have investigated the static and dynamic behavior of BNNTs. For example, based on the Donnell shell approach, Salehi-Khojin and Jalili [7] studied the buckling behavior of multi-walled BNNTs (MWBNNTs)-based composites corresponding to electro-thermo-mechanical loadings. By taking into account molecular mechanics simulations and continuum mechanics assumptions, Chowdhury et al. [8] carried out the transverse and radial breathing vibrations of armchair and zigzag BNNTs. The critical buckling loads of BNNTs for different diameters subjected to uniaxial compression loading were obtained via the molecular dynamic (MD) by Ebrahimi-Nejad et al. [9]. Yang et al. [10] analyzed the influence of geometrically nonlinear deformation on the nonlinear dynamic response of piezoelectric cylindrical shells reinforced using BNNTs via the finite difference technique. A three dimensional finite element method was applied by Ansari et al. [11] to investigate the stability properties of single-walled BNNTs (SWBNNTs) and demonstrated that zigzag BNNTs offer more stability than armchair ones. Recently, Yan et al. [12] studied the influence of tube-shaped radius on the frequencies of both torsional and longitudinal free vibrations of BNNTs. Owing to the significance of low-size structures, numerous empirical tests and atomistic simulations [13, 14] have been performed to show the noteworthy impact of low-size materials on mechanical properties as the material size enters the nanoscale. Due to the existing issues such as great computational costs in utilizing controlled tests and MD modelling in nanostructures and the lack of an internal length scale factor in traditional continuum models, higher-order non-classical continuum approaches are required to perfectly predict the mechanical behavior of low-size structures [15–23]. Until now, several projects have utilized the described non-classical continuum models to consider the impacts of low scale on the free/forced vibration, and the static/dynamic instability problem of different CNTs and BNNTs [24–43]. For example, by taking into account the nonlocal elasticity theory of Eringen [21] in the framework of Euler–Bernoulli beam assumption, Ghobanpour Arani and Roudbari [44] proposed a non-classical model to study the impacts of surface stress and small scale on the nonlocal frequencies of zigzag coupled SWBNNT via viscoelastic medium. Regarding the concept of nonlocal elasticity theory, the stress state at every point of the area of nanostructures is supposed to be a function of strain states at all other points of the nanostructure. Mercan and Civalek [45] obtained the buckling load of BNNTs on elastic substrate aided by the nonlocal elasticity theory with discrete singular convolution (DSC). Akgoz and Civalek [46] applied the modified strain gradient theory introduced by Lam et al. [22] to investigate the bending of SWCNTs based on a higher-order beam model. According to the modified strain gradient theory, to exactly capture the effect of low scale, three independent higher-order length scale parameters should be considered. To consider both hardening and softening effects in a single theory, Lim et al. [47] combined the nonlocal elasticity and strain gradient approaches and demonstrated that to achieve a correct modeling of the size-dependent structures, it is essential to employ both hardening and softening effects of materials. The proposed non-classical assumption is the so-called nonlocal strain gradient theory (NSGT). When using NSGT, the focus is on correctly considering the influence of two length scale terms on the physical and mechanical behaviors of size-dependent structures. Li et al. [48] applied NSGT in the framework of Euler–Bernoulli beam theory to analyze the flexural wave propagation phenomenon through functionally graded nanobeams. The authors indicated that the acoustical and optical phase velocities normally increase with decreasing nonlocal factor or increasing material length scale term. In another study by Li et al. [49], wave propagation problem in size-dependent SWCNT in view of surface effect and magnetic field was carried out via NSGT. Malik et al. [50] showed how the thermal environment affects the forced vibration of SWCNTs resting on viscoelastic foundation using NSGT. Dehghan et al. [51] studied the small size effect on the wave propagation problem of fluid-conveying magnetoelectro-elastic nanotube via NSGT. Recently, Mohammadian et al. [52] used NSGT in the framework of Euler-Bernoulli beam model to investigate the natural frequencies of hetero-junction CNTs. Thanks to impeccable hollow cylindrical geometry in CNTs and BNNTs along with amazing chemical, mechanical and physical characteristics, they are anticipated to be utilized as nanofluidic, gas storage, and drug delivery systems [53–59]. Ghobanpour-Arani et al. [60] reported size-dependent wave propagation in double-walled BNNTs conveying nanofluid based on nonlocal Timoshenko beam theory. NSGT in conjunction with the shear deformable shell theory was used by Zeighampour et al. [61] to investigate wave propagation in fluid-conveying double walled CNTs considering Van Der Waals (VDW) force between the two intended walls. Mohammadi et al. [62] applied NSGT in conjunction with cylindrical shell model to study the free vibration of an SWCNT conveying viscous fluid. The free vibration and instability behavior of SWCNT conveying viscous fluid flow were investigated by Mahinzare et al. [63] via NSGT and first-order shear deformation theory.

The above literature review evidently shows that no analytical or numerical study on the application of NSGT in conjunction with first-order shear deformation shell model has been carried out to examine the vibration behavior of two vertically-aligned SWBNNTs conveying fluid in thermal environment. Therefore, the major purpose of current paper is to fill this important gap in the literature. Indeed, investigations demonstrated that drugs could bind to the
BNNTs surface in a stable manner with non-covalent interactions. Also, BNNTs are biocompatible and non-toxic, and have the potential to act as competent drug delivery vehicles. Therefore, one of the main innovations of the present work is to consider the effect of VDW interaction between two SWBNNTs conveying nanofluid with respect to the variations of temperature and external voltage. On the other hand, the effect of size-dependency on the dynamic behavior of BNNTs is presented by implementing both hardening and softening effects in the framework of NSGT. The first-order shear deformation shell model which include the effects of transverse shear deformation and rotary inertia is considered for obtaining the governing equations of motion. The two vertically-aligned SWBNNTs are coupled through VDW interaction. The motion equations and associated boundary conditions are derived by means of Hamilton’s variational principle, and then solved utilizing differential quadrature method (DQM). As mode shapes are very important in the design of the smart nanostructures. Thus, the effect of small scale parameters on the mode shapes of various boundary conditions are investigated. Furthermore, it is denoted that VDW force is a substantial parameter and cannot be neglected in the analysis.

2 PRELIMINARY FORMULATION

As schematically demonstrated in Fig. 1, two vertically-aligned SWBNNTs (simulated as cylindrical shell) of the ensemble network conveying fluid and of the same length \(L \), same radius \(R \), same mean radius \(r_m \), inter-tube distance \(l_m \), and same uniform thickness \(h \) are subjected to the thermal environment of \(\Delta T \).

Based on the first-order shear deformable shell approach, the deflection field \((U, V, W)\) for the cylindrical shell can be expressed as [64-66]:

\[
U_i (x, \theta, z, t) = u_i (x, \theta, t) + z \psi_{xi} (x, \theta, t), \\
V_i (x, \theta, z, t) = v_i (x, \theta, t) + z \psi_{\theta i} (x, \theta, t), \\
W_i (x, \theta, z, t) = w_i (x, \theta, t), \quad i = 1, 2.
\]

(1)

In which \(u \), \(v \) and \(w \) refer to the displacements along the curvilinear coordinates \(x \), \(\theta \) and \(z \), respectively. Furthermore, \(\psi_x \) and \(\psi_{\theta} \) indicate the rotations of each BNNT cross-section about \(x \) – and \(\theta \) – axis. Based on the displacement field stated in Eq. (1) and implemented linear strain-displacement relations, the nonzero strains can be presented as:

\[
e_{xxi} = \frac{\partial u_i}{\partial x} + z \frac{\partial \psi_{xi}}{\partial x}, \\
e_{\theta\theta i} = \frac{1}{R} \frac{\partial v_i}{\partial \theta} + z \frac{\partial \psi_{\theta i}}{\partial \theta} + \frac{w_i}{R}, \\
\gamma_{x\theta i} = \frac{\partial v_i}{\partial \theta} + \frac{1}{R} \frac{\partial u_i}{\partial \theta} + z \left(\frac{1}{R} \frac{\partial \psi_{xi}}{\partial \theta} + \frac{\partial \psi_{\theta i}}{\partial x} \right),
\]

(2)
The non-classical differential constitutive equation based on the assumption of Lim et al. [47] in the framework of piezoelectricity theory can be expressed as:

\[
\begin{bmatrix}
1 - (e_0 \alpha)^2 \left(\frac{\partial^2}{\partial x^2} + \frac{1}{R^2} \frac{\partial^2}{\partial \theta^2} \right)
\end{bmatrix}
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{\theta \theta} \\
\sigma_{x \theta} \\
\sigma_{\theta z} \\
\sigma_{xz}
\end{bmatrix}
=
\begin{bmatrix}
\epsilon_{xx} \\
\epsilon_{\theta \theta} \\
\gamma_{x \theta} \\
\gamma_{x z} \\
\gamma_{xz}
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & e_{31} \\
0 & 0 & e_{31} & E_{xi} & E_{zi} \\
0 & 0 & 0 & E_{\theta i} & \alpha \\
0 & e_{24} & 0 & E_{zi} & 0 \\
e_{24} & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
D_{xi} \\
D_{\theta i} \\
D_{zi}
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & 0 & 0 & e_{24} \\
e_{31} & e_{31} & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\epsilon_{xx} \\
\epsilon_{\theta \theta} \\
\gamma_{x \theta} \\
\gamma_{x z} \\
\gamma_{xz}
\end{bmatrix}
\]

\[
\begin{bmatrix}
S_{11} & 0 & 0 & E_{xi} & p_1 \\
0 & S_{22} & 0 & E_{\theta i} & p_2 \\
0 & 0 & S_{33} & E_{zi} & p_3
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & 0 & 0 & e_{24} \\
e_{31} & e_{31} & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\epsilon_{xx} \\
\epsilon_{\theta \theta} \\
\gamma_{x \theta} \\
\gamma_{x z} \\
\gamma_{xz}
\end{bmatrix}
\]

where \([\sigma_{xx} \sigma_{\theta \theta} \sigma_{x \theta} \sigma_{\theta z} \sigma_{xz}]^T\) denotes the stress tensor, \([D_x D_\theta D_z]^T\) is the electric displacement, and \([E_x E_\theta E_z]^T\) represents the electric field vector. The symbol \(E\) refers to the Young's
modulus of BNNT. Furthermore, the parameters e_0a and l denote, respectively, the nonlocal term and the strain gradient term. Moreover, e_0 and a represent, respectively, the calibration constant and the internal characteristic length. Also, α is the thermal expansion coefficient, and the thermal changes of the environment is demonstrated by ΔT. Moreover, ϑ is Poisson’s ratio and e_{ij}, s_{ij} and p_i are, respectively, reduced piezoelectric constants, dielectric constants and pyroelectric constants.

Based on the piezoelectricity theory [67], the electric potential for each SWBNNT can be defined as:

$$\phi(x, \theta, z, t) = -\cos\left(\frac{\pi z}{h}\right) \phi_i(x, \theta, t) + \frac{2z V_0}{h}, \quad i=1,2.$$ \hfill (4)

In which ϕ_i denotes the variation of electric potential for each SWBNNT and V_0 expresses the external electric voltage. However, to satisfy Maxwell relations, the electric field must be considered as:

$$E_x = -\frac{\partial \phi}{\partial x} = \cos\left(\frac{\pi z}{h}\right) \frac{\partial \phi}{\partial x},$$

$$E_\theta = -\frac{1}{R+z} \frac{\partial \phi}{\partial \vartheta} = \frac{1}{R+z} \cos\left(\frac{\pi z}{h}\right) \frac{\partial \phi}{\partial \vartheta},$$

$$E_z = -\frac{\pi}{h} \sin\left(\frac{\pi z}{h}\right) \phi - \frac{2V_0}{h}.$$ \hfill (5)

Hamilton’s principle is employed to derive the governing equations and boundary conditions according to [68]

$$\int_0^t \delta (\Pi_s + \Pi_f - \Pi_k) \, dt = 0$$ \hfill (6)

where Π_s, Π_f and Π_k are the virtual strain energy term, the work done by external forces (the work exerted by fluid-SWBNNT interaction, external electric potential and temperature rise, and vdW forces) and the kinetic energy, respectively. The strain energy variation of the fluid-conveying SWBNNTs is written as:

$$\delta \Pi_s = \int_0^{2\pi} \int_0^L \int_0^h \frac{1}{2} \left[\sigma_{xx} \delta \varepsilon_{xx} + \sigma_{\theta \theta} \delta \varepsilon_{\theta \theta} + \sigma_x \delta \gamma_{x \theta} + \sigma_{\theta z} \delta \gamma_{\theta z} + \sigma_{xz} \delta \gamma_{xz} - \right.$$
$$D_{xx} \delta E_{xx} - D_{\theta \theta} \delta E_{\theta \theta} - D_{xz} \delta E_{xz} \right] Rdxdz +$$
$$\int_0^{2\pi} \int_0^L \int_0^h \frac{1}{2} \left[\sigma_{xx} \delta \varepsilon_{xx} + \sigma_{\theta \theta} \delta \varepsilon_{\theta \theta} + \sigma_x \delta \gamma_{x \theta} + \sigma_{\theta z} \delta \gamma_{\theta z} + \sigma_{xz} \delta \gamma_{xz} - \right.$$
$$D_{xx} \delta E_{xx} - D_{\theta \theta} \delta E_{\theta \theta} - D_{xz} \delta E_{xz} \right] Rdxdz$$ \hfill (7)

Substituting Eq. (2) into Eq. (7) results in the following set of equations:

$$\int_0^{2\pi} \int_0^L \left[N_{xx} \delta \frac{\partial \varepsilon_{xx}}{\partial x} + M_{xx} \frac{\partial \psi_{xx}}{\partial x} + N_{\theta \theta} \delta \frac{\partial \varepsilon_{\theta \theta}}{\partial \theta} + M_{\theta \theta} \frac{\partial \psi_{\theta \theta}}{\partial \theta} + \frac{1}{R} \frac{\partial W_1}{\partial \vartheta} + \frac{1}{R} \frac{\partial W_1}{\partial \vartheta} \right] Rdxd\theta +$$
$$N_{\theta \theta} \delta \left(\frac{\partial \varepsilon_{\theta \theta}}{\partial \theta} + \frac{1}{R} \frac{\partial \psi_{\theta \theta}}{\partial \theta} \right) + M_{\theta \theta} \delta \left(\frac{\partial \psi_{xx}}{\partial x} + \frac{\partial \psi_{\theta \theta}}{\partial \theta} \right) + Q_{xz} \delta \left(\psi_{xz} + \frac{\partial \psi_{xz}}{\partial \theta} \right)$$ \hfill (8)
\[
\begin{align*}
\int_0^{2\pi} \int_0^L \int_0^\frac{h}{2} \left[D_{x1}\delta E_{x1} + D_{\theta1}\delta E_{\theta1} + D_{z1}\delta E_{z1} \right] R dx dx d\theta + \int_0^{2\pi} \int_0^L \left[N_{xx2}\delta \frac{\partial u_2}{\partial x} \right] + \\
M_{xx1}\delta \frac{\partial \psi_2}{\partial x} + N_{\theta\theta2}\delta \left(\frac{1}{R} \frac{\partial \psi_2}{\partial \theta} + \frac{1}{R} W_2 \right) + \frac{1}{R} M_{\theta\theta2}\delta \frac{\partial \psi_2}{\partial \theta} + + N_{x\theta2}\delta \left(\frac{1}{R} \frac{\partial \psi_2}{\partial x} + \frac{1}{R} \frac{\partial u_2}{\partial x} \right) + \\
M_{x\theta2}\delta \left(\frac{1}{R} \frac{\partial \psi_2}{\partial x} + \frac{\partial \psi_2}{\partial x} \right) + Q_{x2} 2\delta \left(\psi_2 + \frac{1}{R} \frac{\partial \psi_2}{\partial \theta} - \frac{v_2 R}{2} \right) + + Q_{xz} 2\delta \left(\psi_2 + \right.
\end{align*}
\]

where \(N_{xxi}, M_{xxi}, N_{\theta\theta i}, M_{\theta\theta i}, N_{x\theta i}, M_{x\theta i}, Q_{xzi}, Q_{xzi} \) denote the bending moments and shear forces, defined as:

\[
\begin{align*}
\langle N_{xxi}, N_{\theta\theta i}, N_{x\theta i} \rangle &= \int_0^{2\pi} \int_0^L \int_0^h \left[Q_{xzi}, Q_{xzi} \right] dx dx dz, \\
\langle M_{xxi}, M_{\theta\theta i}, M_{x\theta i} \rangle &= \int_0^{2\pi} \int_0^L \int_0^h \left[Q_{xzi}, Q_{xzi} \right] x dx dz, \\
\langle Q_{xzi}, Q_{xzi} \rangle &= \int_0^{2\pi} \int_0^L \int_0^h k_s \left[\sigma_{xzi}, \sigma_{xzi} \right] dz,
\end{align*}
\]

where \(k_s \) refers to the shear correction term.

The variation of kinetic energy using Eq. (1) can be presented as:

\[
\begin{align*}
\delta \Pi_k &= \int_0^{2\pi} \int_0^L \int_0^h \left[\frac{\partial u_1}{\partial t} \delta \frac{\partial u_1}{\partial t} + z \frac{\partial \psi_1}{\partial t} \delta \frac{\partial u_1}{\partial t} + z \frac{\partial u_1}{\partial t} \delta \frac{\partial \psi_1}{\partial t} + z^2 \frac{\partial \psi_1}{\partial t} \delta \frac{\partial \psi_1}{\partial t} \right] R dx dx d\theta + \\
&\int_0^{2\pi} \int_0^L \int_0^h \left[\frac{\partial v_1}{\partial t} \delta \frac{\partial v_1}{\partial t} + z \frac{\partial \psi_1}{\partial t} \delta \frac{\partial v_1}{\partial t} + z \frac{\partial v_1}{\partial t} \delta \frac{\partial \psi_1}{\partial t} + z^2 \frac{\partial \psi_1}{\partial t} \delta \frac{\partial \psi_1}{\partial t} \right] R dx dx d\theta + \\
&\int_0^{2\pi} \int_0^L \int_0^h \left[\frac{\partial w_1}{\partial t} \delta \frac{\partial w_1}{\partial t} + z \frac{\partial \psi_1}{\partial t} \delta \frac{\partial w_1}{\partial t} + z \frac{\partial w_1}{\partial t} \delta \frac{\partial \psi_1}{\partial t} + z^2 \frac{\partial \psi_1}{\partial t} \delta \frac{\partial \psi_1}{\partial t} \right] R dx dx d\theta
\end{align*}
\]

where \(\rho \) stands for the density of each mass of SWBNNT. It should be noted that the fluid inside the every SWBNNT is taken as incompressible, inviscid, isentropic and irrotational. However, the external work variation exerted by fluid can be presented as:

\[
\begin{align*}
\delta \Pi_{f, fluid} &= \int_0^{2\pi} \int_0^L \rho_f \left[\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} \right)^2 \right] w_1 \delta w_1 R dx dx d\theta + \int_0^{2\pi} \int_0^L \rho_f \left[\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x} \right)^2 \right] w_2 \delta w_2 R dx dx d\theta
\end{align*}
\]

In which \(\rho_f \) indicates the mass density of applied fluid. Furthermore, \(U \) represents the fluid velocity.
Also, according to Lennard–Jones potential function, the external work variation exerted by vdW forces on a SWBNNT, owing to its relative lateral motion with respect to its neighboring BNNT, can be defined as: [69, 70]

\[
\delta \Pi_{f, vdw} = \int_0^{2\pi} \int_0^L C_y (w_1 - w_2) \delta v_1 R dx d\theta + \int_0^{2\pi} \int_0^L C_y (v_1 - v_2) \delta v_1 R dx d\theta - \\
\int_0^{2\pi} \int_0^L C_z (w_1 - w_2) \delta w_2 R dx d\theta - \int_0^{2\pi} \int_0^L C_y (v_1 - v_2) \delta v_2 R dx d\theta
\]

(12)

where \(C_y \) and \(C_z \) express the VDW interaction factor, which are defined as: [69]

\[
C_y = -\frac{256 \varepsilon r_m^2}{9\alpha^4 L^2} \int_0^L \int_0^L \int_0^{2\pi} \frac{\sigma^6}{2} \left[X^{-4} - 8X^{-5} \left\{ r_m \left(\cos \Phi_2 - \cos \Phi_1 \right) \right\}^2 \right] d\Phi_1 d\Phi_2 dx_1 dx_2,
\]

\[
C_z = -\frac{256 \varepsilon r_m^2}{9\alpha^4 L^2} \int_0^L \int_0^L \int_0^{2\pi} \frac{\sigma^6}{2} \left[X^{-4} - 8X^{-5} \left\{ d + r_m \left(\sin \Phi_2 - \sin \Phi_1 \right) \right\}^2 \right] d\Phi_1 d\Phi_2 dx_1 dx_2,
\]

\[
X = (x_2 - x_1)^2 + 2r_m \left\{ 1 - \cos \left(\Phi_2 - \Phi_1 \right) \right\} + l_m^2 + 2r_m l_m \left(\sin \Phi_2 - \sin \Phi_1 \right)
\]

where \(\varepsilon \) refers to the well depth, \(a \) is length of the BN bound, and \(\sigma \) denotes the equilibrium distance. Finally, the external work variation exerted by the electric potential and temperature rise for each SWBNNT can be written as:

\[
\delta \Pi_{f, elec} = \\
\int_0^{2\pi} \int_0^L \left(N_x^T + N_E \right) \frac{\partial w_1}{\partial \chi} \delta \frac{\partial w_1}{\partial \chi} R dx d\theta + \int_0^{2\pi} \int_0^L \left(N_x^T + N_E \right) \frac{\partial v_1}{\partial \chi} \delta \frac{\partial v_1}{\partial \chi} R dx d\theta - \\
\int_0^{2\pi} \int_0^L \left(N_x^T + N_E \right) \frac{\partial w_2}{\partial \chi} \delta \frac{\partial w_2}{\partial \chi} R dx d\theta + \int_0^{2\pi} \int_0^L \left(N_x^T + N_E \right) \frac{\partial v_2}{\partial \chi} \delta \frac{\partial v_2}{\partial \chi} R dx d\theta
\]

(14)

where

\[
N_x^T = \int \frac{h_1}{h_2} E \alpha \Delta T dz, \quad N_E = -\int \frac{h_1}{h_2} \frac{2e_3 \Phi_0}{h_1} dz.
\]

(15)

Finally, substituting \(\delta \Pi_s, \delta \Pi_f = \delta \Pi_{f, fluid} + \delta \Pi_{f, vdw} + \delta \Pi_{f, elec} \) and \(\delta \Pi_k \) in the Hamilton’s principle, the general system of higher-order equations of motion can be obtained as:

\[
\delta u_i : \frac{\partial N_{xxx}}{\partial \chi} + \frac{1}{R} \frac{\partial N_{x \theta i}}{\partial \theta} = I_0 \frac{\partial^2 u_i}{\partial t^2} + I_1 \frac{\partial^2 \psi_{xi}}{\partial t^2},
\]

(16)

\[
\delta v_i : \frac{\partial N_{x \theta i}}{\partial \chi} + \frac{1}{R} \frac{\partial N_{\theta \theta i}}{\partial \theta} + \frac{Q_{\theta z i}}{R} - \left(N_x^T + N_E \right) \frac{\partial^2 v_i}{\partial \chi^2} + C_y \left(v_i - v_j \right) = I_0 \frac{\partial^2 v_i}{\partial t^2} + I_1 \frac{\partial^2 \psi_{\theta \theta i}}{\partial t^2},
\]

(17)
\[
\delta w_i : \frac{\partial Q_{xzi}}{\partial x} + \frac{1}{R} \frac{\partial Q_{xzi}}{\partial \theta} - \frac{N \theta_{xzi}}{R} - \rho_f \left(\frac{\partial^2 w_i}{\partial t^2} + 2U \frac{\partial^2 w_i}{\partial x \partial t} + U^2 \frac{\partial^2 w_i}{\partial x^2} \right) + C_z \left(w_i - w_j \right) \quad (18)
\]

\[
\left(N^T_x + N_x \right) \frac{\partial^2 w_i}{\partial t^2} = I_0 \frac{\partial^2 w_i}{\partial t^2},
\]

\[
\delta \psi_{xzi} : \frac{1}{R} \frac{\partial M_{xzi}}{\partial \theta} = -Q_{xzi} - I_1 \frac{\partial^2 u_i}{\partial t^2} + I_2 \frac{\partial^2 \psi_{xzi}}{\partial t^2},
\]

\[
\delta \varphi_i : \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial D_{xi}}{\partial x} \cos \left(\frac{\pi z}{h} \right) + \frac{1}{R + z} \frac{\partial D_{xzi}}{\partial \theta} \cos \left(\frac{\pi z}{h} \right) + D_{zi} \left(\frac{\pi z}{h} \right) \sin \left(\frac{\pi z}{h} \right) \, dz, i = 1,2
\]

In which

\[
\langle I_0, I_1, I_2 \rangle = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho \left(1, z, z^2 \right) \, dz,
\]

Also, Hamilton’s principle gives the corresponding boundary conditions at each SWBNNT ends \((x = 0, L)\) as:

\[
\delta u_i : N_{xzi} - \frac{1}{R} \frac{\partial N_{xzi}}{\partial \theta} = 0, \quad (23)
\]

\[
\delta v_i : N_{xzi} - \frac{1}{R} \frac{\partial N_{xzi}}{\partial \theta} - \frac{Q_{xzi}}{R} = 0, \quad (24)
\]

\[
\delta w_i : Q_{xzi} - \frac{1}{R} \frac{\partial Q_{xzi}}{\partial \theta} + \frac{N \theta_{xzi}}{R} = 0, \quad (25)
\]

\[
\delta \psi_{xzi} : M_{xzi} - \frac{1}{R} \frac{\partial M_{xzi}}{\partial \theta} + Q_{xzi} = 0, \quad (26)
\]

\[
\delta \varphi_i : \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\partial D_{xzi}}{\partial x} \cos \left(\frac{\pi z}{h} \right) \, dz = 0, i = 1,2 \quad (28)
\]

Finally, substituting Eq. (3) (with respect to Eq. 9) into Eqs. (16)–(21), the non-classical equilibrium equations in terms of displacements are derived and provided in Appendix A.
3 SOLUTİON OF EQUATİONS OF FLUĐ _ CONVEYİNG SWBNNTs

To solve the set of main equations, i.e. equations given in Appendix A, DQM is utilized to discretize the equilibrium equations and associated boundary conditions. According to this method, the partial derivative of a function at a given discrete point can be determined by a weighted linear combination of the function values at all grid points. However, the derivative of each optional function in an optional point can be rewritten at all intervals. Furthermore, based on Chebyshev points, the grid points are computed as: [71]

\[X_j = \frac{1}{2} \left(1 - \cos \left(\frac{(j-1)\pi}{N-1} \right) \right), \quad j = 1, 2, \ldots, N. \] \hspace{1cm} (29)

In which \(N \) depicts the entire number of grid points. Additionally, the \(p \)th-order differential operator is indicated as a finite series in the form

\[\frac{\partial^p}{\partial x^k} \{ u_i, v_i, w_i, \psi_{xi}, \psi_{\theta i} \} = \sum_{j=1}^{N} C_{kj}^{(p)} \{ \tilde{u}_i, \tilde{v}_i, \tilde{w}_i, \tilde{\psi}_{xi}, \tilde{\psi}_{\theta i} \}. \] \hspace{1cm} (30)

where \(C_{kj}^{(p)} \) denotes the weighting factors for the \(p \)th-order derivative. In addition, the considered boundary conditions can be presented as:

\[u_i = v_i = w_i = \psi_{xi} = \psi_{\theta i} = 0, \quad x = 0, L \] \hspace{1cm} (31)

For a clamped-end (C) SWBNNT,

\[v_i = w_i = \psi_{\theta i} = 0, \quad x = 0, L \]

\[\left(1 - l^2 \frac{\partial^2}{\partial x^2} + \frac{l^2}{2R^2} \frac{\partial^2}{\partial \theta^2} \right) \left(A_{11} \frac{\partial u_i}{\partial x} + B_{11} \frac{\partial \psi_{xi}}{\partial x} + A_{12} \left(\frac{\partial v_i}{R \partial \theta} + \frac{w_i}{R} \right) + B_{12} \frac{\partial \psi_{\theta i}}{R \partial \theta} \right) = 0, \] \hspace{1cm} (32)

\[\left(1 - l^2 \frac{\partial^2}{\partial x^2} + \frac{l^2}{2R^2} \frac{\partial^2}{\partial \theta^2} \right) \left(B_{11} \frac{\partial u_i}{\partial x} + D_{11} \frac{\partial \psi_{xi}}{\partial x} + B_{12} \left(\frac{\partial v_i}{R \partial \theta} + \frac{w_i}{R} \right) + D_{12} \frac{\partial \psi_{\theta i}}{R \partial \theta} \right) = 0, \]

For simply-supported-end (S) SWBNNT.

In order to investigate the free vibration of the two vertically-aligned SWBNNTs (simulated as cylindrical shell) of the ensemble network, the displacement field along the \(\theta \) – direction can be stated as follows:

\[
\begin{bmatrix}
 u_i(x, \theta, t) \\
 v_i(x, \theta, t) \\
 w_i(x, \theta, t) \\
 \psi_{xi}(x, \theta, t) \\
 \psi_{\theta i}(x, \theta, t) \\
 \phi_i(x, \theta, t)
\end{bmatrix} = \sum_{n=1}^{\infty} e^{\alpha t}
\begin{bmatrix}
 \tilde{u}_i(x) \cos(n\theta) \\
 \tilde{v}_i(x) \sin(n\theta) \\
 \tilde{w}_i(x) \cos(n\theta) \\
 \tilde{\psi}_{xi}(x) \cos(n\theta) \\
 \tilde{\psi}_{\theta i}(x) \sin(n\theta) \\
 \tilde{\phi}_i(x) \cos(n\theta)
\end{bmatrix}
\] \hspace{1cm} (33)

where \(\omega \) expresses the complex natural frequency. Firstly, substituting Eq. (33) into the governing equations (equations given in Appendix A) and related boundary conditions (Eqs. (31–32)), then employing DQM, the eigenvalue problem can be obtained as in the following matrix form.
where M, C, K and d represent, respectively, the mass matrix, damping matrix, stiffness matrix, and modal vector. It must be noted that $Re(\omega)$ denotes the damping factor and $Im(\omega)$ expresses the natural frequency. Nevertheless, by attaining the non-trivial solution of relation (34), the complex natural eigenfrequency can be calculated.

4 RESULTS AND DISCUSSION
4.1 Convergence study

In this section, the convergence for performed calculations is systematically guaranteed in a simple trial and error fashion, i.e., by increasing the number of nodes distributed through the length of SWBNNTs, N, while seeking for stability in the predicted dimensionless complex natural frequencies with a predefined error bound $\Delta \omega < 10^{-7}$. Therefore, the results stated in Table 1 indicate the convergence of the first two computed dimensionless natural frequencies $\omega_{nom} = \omega_R \sqrt{\frac{\rho}{E}}$ for three various boundary conditions (i.e., CC, SC, and SS). As shown, at least 16 nodes ($N=16$) are required for the proper convergence of numerical solutions. Here, the length scale parameters are assumed to be zero. Also, the material and physical parameters of SWBNNTs used in this section and following ones (except for the section of verification of results) are in the form

$$E = 18TPa, \rho = 2300 \frac{kg}{m^2}, \theta = 0.25, \rho_f = 1000 \frac{kg}{m^2}, \alpha = 1.6 \times 10^{-6},$$

$$L = 10R, R = 12nm, h = 0.05R, \varepsilon = 4.20383, \sigma = 0.34nm,$$

$$a = 0.145nm, r_m = R + \frac{h}{2}, l_m = 3nm, e_{31} = 5.2, e_{24} = 12.7, s_{11} = 6.46 \times 10^{-9},$$

$$s_{22} = 6.46 \times 10^{-9}, s_{33} = 5.62 \times 10^{-9}.$$ (35)

Table 1
First two dimensionless natural frequencies with respect to the total number of nodes.

<table>
<thead>
<tr>
<th>N</th>
<th>Mode</th>
<th>SS</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>0.34246</td>
<td>0.95635</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.35475</td>
<td>0.89507</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>0.83139</td>
<td>1.43125</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0.35856</td>
<td>0.88528</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>0.83046</td>
<td>1.42668</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0.35851</td>
<td>0.88520</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.83042</td>
<td>1.42559</td>
</tr>
</tbody>
</table>

4.2 Comparison study

Before presenting the main results, the correctness and accuracy of the derived formulations must be established. To this end, by neglecting VDW force as well as fluid and thermal effect, the calculated values of the first natural frequencies of cylindrical piezoelectric shell for simply-supported boundary condition are reported in Table 2. Comparisons with numerical reports previously presented by Mehralian and Tadi Beni are also provided [72].
calculated frequency values demonstrate good agreement with the results presented in the mentioned study. Here, it is assumed that $L = R$, $\mu^2 = 3.3nm^2$ and $h = 0.05R$.

Table 2
Comparison study of the nondimensional natural frequencies (THz) of single cylindrical piezoelectric shell.

<table>
<thead>
<tr>
<th>$l (nm)^2$</th>
<th>Present (DQM)</th>
<th>Ref. [72] (analytical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.3822</td>
<td>0.3813</td>
</tr>
<tr>
<td>0.3</td>
<td>0.5331</td>
<td>0.5323</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6551</td>
<td>0.6542</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7544</td>
<td>0.7536</td>
</tr>
<tr>
<td>0.9</td>
<td>0.8418</td>
<td>0.8409</td>
</tr>
</tbody>
</table>

4.3 Main results

Numerical studies are carried out in this section to properly understand the impact of several factors (i.e., size-dependent effects, inter-tube distance, aspect ratio, thermal environment) on the variations of the complex natural frequencies of the system.

In Fig. 2, the effect of the nonlocal term μ on the variations of the real and imaginary parts of eigenfrequency versus flow velocity for three various boundary conditions (i.e., SS, CC and CS) is displayed. Here, the strain gradient parameter and thermal factor are assumed to be zero, $L = 10R$, $V_0 = 0$ and $h = 0.05R$. The key observations are summarized as follows. As expected, the natural frequency (imaginary part of complex eigenfrequency) is reduced with increasing flow velocity until it becomes zero and the first mode of divergence instability occurs. One should note that the flow velocity related to the zero values of the imaginary part of frequency is named the critical velocity. It is also found that with increasing nonlocal factor, the natural frequency and critical flow velocity decrease for all boundary conditions. This is attributed to the fact that the interaction force between SWBNNT atoms decreases and brings about a softer system. On the other hand, the real part of complex eigenfrequency initially remains zero, meaning that in this period, the fluid flow in system does not experience any damping and the system is stable.
Effect of nonlocal term on the variations of the complex natural frequency versus flow velocity for different boundary conditions.

Fig. 2 shows the effect of strain gradient parameter on the variations of the complex eigenfrequency with respect to different flow velocity values for different boundary conditions. Here, the nonlocal parameter and thermal factor are supposed to be zero, $L = 10R$, $V_0 = 0$ and $h = 0.05R$. The comments about divergence instability and critical flow velocity can readily be made similar to the mentioned remarks (i.e., as in Fig. 2). In particular, it is observed that as the strain gradient parameter increases, the natural frequency and critical flow velocity both increase since the interaction force between SWBNNT atoms increases and the structure becomes stiffer.
Fig. 4 demonstrates the effect of aspect ratio L/R on the variations of the imaginary part of dimensionless complex eigenfrequency against different flow velocity values for the first mode under various boundary conditions. Here, $\Delta T = 0$, $\mu = 0.4 \text{nm}$, $l = 0.3 \text{nm}$, and $V_0 = 0$. It is observed that with increasing aspect ratio, the natural frequency (imaginary part of complex eigenfrequency) and critical flow velocity are reduced. It is inferred that a system with a high aspect ratio is further likely to cause the divergence instability [73].

The effect of temperature on the imaginary part of the system eigenfrequency versus flow velocity for the first mode under various boundary conditions is displayed in Fig. 5. Here, $L/R = 10$, $\mu = 0.4 \text{nm}$, $l = 0.3 \text{nm}$ and $V_0 = 0$. The results indicate that an increase in temperature change leads to a higher natural frequency and critical flow velocity.
The influence of electric voltage on the imaginary part versus flow velocity for the first mode under various boundary conditions is depicted in Fig. 6. Here $L_R = 10$, $\Delta T = 0$, $\mu = 0.4 \, nm$ and $l = 0.3 \, nm$. It is shown that with increasing electric voltage, the natural frequency decreases.

![Effect of initial electric voltage on the variations of the imaginary part of eigenfrequency versus flow velocity.](image)

Fig. 6

The effect of inter-tube distance on the dimensionless frequency against flow velocity is presented in Fig. 7. Here, $L_R = 10$, $\Delta T = 0$, $\mu = 0.4 \, nm$, $l = 0.3 \, nm$ and $V_0 = 0$. As noted, the natural frequency decreases with increasing inter-tube distance of the two SWBNNTs. This result is in complete agreement with the findings of Ref. [66].

![Effect of inter-tube distance on the variations of the imaginary part of eigenfrequency versus flow velocity.](image)

Fig. 7

© 2021 IAU, Arak Branch
Mode shapes are crucial in the design of smart nanostructures. Thus, the first three mode shapes of CC, SS, and CS boundary conditions are demonstrated in Fig. 8 for various values of the nonlocal and strain gradient parameters. In general, one concludes that the mode shapes of all boundary conditions are affected by small-scale terms.

![Mode shapes of CC, SS, and CS BNNT versus x/L.](image1)

Finally, the effect of VDW force on the dimensionless frequency with respect to flow velocity is illustrated in Fig. 9 for different boundary conditions. Here, $L/R = 10$, $\Delta T = 0$, $\mu = 0.4 \text{nm}$, $l = 0.5 \text{nm}$, and $V_0 = 0$. It is seen that by considering VDW interaction, the natural frequency increases as VDW forces increase the stiffness of the structure.

![Effect of VDW force on dimensionless frequency](image2)
5 CONCLUSIONS

A numerical model was presented to investigate the size-dependent free vibration problem of two vertically-aligned SWBNNTs conveying fluid using the nonlocal strain gradient piezoelectric theory in conjunction with the first-order shear deformation shell model. The two adjacent SWBNNTs were coupled with each other by Van Der Waals (VDW) interaction. The governing partial formulations was derived using Hamilton’s principle, after which DQM was implemented to solve equilibrium equations. Finally, the numerical results were displayed to denote how the dimensionless complex eigenfrequency is altered by varying the temperature change, aspect ratio, small scale parameters, inter-tube distance, and boundary conditions. The major results are summed up as follows:

- The results denoted that VDW force is a significant parameter and cannot be neglected in the analysis.
- By incrementing the nonlocal term, the system frequency and critical flow velocity decrease for all boundary conditions.
- By increasing the strain gradient parameter, the critical flow velocity and the natural frequency increase.
- An increase in the value of inter-tube distance brings about a decrease in natural frequency.

APPENDIX A

\[
\begin{align*}
\partial u_i & : A_{11} \left(\frac{\partial^2 u_i}{\partial x^2} - \frac{1}{R^2} \frac{\partial^4 u_i}{\partial x^4} - \frac{l^2}{R^2} \frac{\partial^2 u_i}{\partial x^2 \partial \theta^2} \right) + B_{11} \left(\frac{\partial^2 \psi_{xi}}{\partial x^2} - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xi}}{\partial x^4} - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xi}}{\partial x^2 \partial \theta^2} \right) + \\
A_{12} & \left[\frac{1}{R} \left(\frac{\partial^2 v_i}{\partial x \partial \theta} + \frac{\partial v_i}{\partial x} \right) - \frac{l^2}{R^2} \frac{\partial^4 v_i}{\partial x^3 \partial \theta} - \frac{l^2}{R^2} \frac{\partial^4 v_i}{\partial x \partial \theta^3} \right] + F_{31} \left(\frac{\partial \phi_i}{\partial x} - \frac{l^2}{R^2} \frac{\partial^2 \phi_i}{\partial x^2} - \frac{l^2}{R^2} \frac{\partial^2 \phi_i}{\partial x \partial \theta^2} \right) + A_{66} \left(\frac{\partial^2 \psi_{xj}}{\partial x \partial \theta} + \frac{1}{R} \frac{\partial^2 v_i}{\partial x \partial \theta} \right) - \\
B_{66} & \left(\frac{\partial^2 \psi_{xj}}{\partial x \partial \theta} + \frac{1}{R} \frac{\partial^2 v_i}{\partial x \partial \theta} \right) - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xj}}{\partial x^2 \partial \theta^2} - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xj}}{\partial x \partial \theta^2} - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xj}}{\partial x \partial \theta^4} \right] + B_{66} \left(\frac{\partial^2 \psi_{xj}}{\partial x \partial \theta} + \frac{1}{R} \frac{\partial^2 v_i}{\partial x \partial \theta} \right) - \\
I_{11} & \left(\frac{\partial^2 \psi_{xj}}{\partial x^2} - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xj}}{\partial x^2 \partial \theta^2} - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xj}}{\partial x \partial \theta^4} \right) + \\
\delta v_i & : A_{66} \left[\frac{\partial^2 \psi_{xj}}{\partial x^2} + \frac{1}{R} \frac{\partial^2 v_i}{\partial x \partial \theta} - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xj}}{\partial x^4} - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xj}}{\partial x^2 \partial \theta^2} - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xj}}{\partial x \partial \theta^4} \right] + \\
B_{66} & \left(\frac{\partial^2 \psi_{xj}}{\partial x^2} + \frac{1}{R} \frac{\partial^2 v_i}{\partial x \partial \theta} - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xj}}{\partial x^4} - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xj}}{\partial x^2 \partial \theta^2} - \frac{l^2}{R^2} \frac{\partial^4 \psi_{xj}}{\partial x \partial \theta^4} \right) + A_{12} \left(\frac{\partial^2 u_i}{\partial x \partial \theta} \right),
\end{align*}
\]
Size-Dependent Vibration Problem of Two Vertically-Aligned ...
\[
\begin{align*}
&l_2 \frac{\partial^4 \psi_{\theta i}}{\partial x^2 \partial \theta} - l_2 \frac{\partial^4 \psi_{\theta i}}{\partial x^2 \partial \theta^2} + G_{31} \left(\frac{\partial \phi_i}{\partial x} - l_2 \frac{\partial^3 \phi_i}{\partial x^3} - l_2 \frac{\partial^3 \phi_i}{\partial x \partial \theta^2} \right) + B_{66} \left(\frac{\partial^2 v_i}{\partial x \partial \theta} + \frac{1}{R} \frac{\partial^2 u_i}{\partial \theta^2} - \frac{\partial^4 \psi_{\theta i}}{\partial x^2 \partial \theta} \right) + D_{66} \left(\frac{\partial^2 v_i}{\partial x \partial \theta} + \frac{1}{R} \frac{\partial^2 u_i}{\partial \theta^2} - \frac{\partial^4 \psi_{\theta i}}{\partial x^2 \partial \theta} \right) + D_{12} \left(\frac{\partial^2 v_i}{\partial x \partial \theta} + \frac{1}{R} \frac{\partial^2 u_i}{\partial \theta^2} - \frac{\partial^4 \psi_{\theta i}}{\partial x^2 \partial \theta} \right) + B_{11} \left(\frac{1}{R} \frac{\partial^2 v_i}{\partial \theta^2} + \frac{\partial^2 \omega_i}{\partial \theta^2} \right) + l_2 \frac{\partial^4 \psi_{\theta i}}{\partial x^2 \partial \theta} - l_2 \frac{\partial^4 \psi_{\theta i}}{\partial x^2 \partial \theta^2} + \frac{D_{2}}{R} \left[\frac{\partial^2 v_i}{\partial x \partial \theta} + \frac{1}{R} \frac{\partial^2 u_i}{\partial \theta^2} - \frac{\partial^4 \psi_{\theta i}}{\partial x^2 \partial \theta} \right] + l_2 \frac{\partial^4 \psi_{\theta i}}{\partial x^2 \partial \theta^2}
\end{align*}
\]
\[F_{31} \left[\frac{1}{R} \left(\frac{\partial^2 V_i}{\partial \theta^2} + \partial^2 w_i \right) - \frac{l^2}{R} \left(\frac{\partial^3 V_i}{\partial x \partial \theta^2} + \partial^2 w_i \right) \right] + \frac{l^2}{R^3} \left(\frac{\partial^3 V_i}{\partial \theta^2} + \partial^2 w_i \right) + G_{31} \left(\frac{\partial^2 \psi_{\theta i}}{\partial \theta^2} - \frac{l^2}{R^2} \frac{\partial^3 \psi_{\theta i}}{\partial x^2 \partial \theta} - \right. \\
\left. \frac{l^2}{R^2} \frac{\partial^3 \psi_{\theta i}}{\partial \theta^2} \right) \right) - P_{33} \left(\phi_i - \frac{l^2}{R^2} \frac{\partial^2 \phi_i}{\partial x^2} - \right. \\
\left. \frac{l^2}{R^2} \frac{\partial^2 \phi_i}{\partial \theta^2} \right) = 0 \\
\]

In which \(\mu = (e_0 a) \) and

\[\langle A_{11,A12} \rangle = \int \frac{h}{2} \frac{E}{2} (1-\theta)z dz , \; \langle B_{11,B12} \rangle = \int \frac{h}{2} \frac{E}{2} (1-\theta)z dz , \]

\[\langle D_{11,D12} \rangle = \int \frac{h}{2} \frac{E}{2} (1-\theta)z^2 dz , \; A_{66} = A_{55} = A_{44} = \int \frac{h}{2} \frac{E}{2 (1+\theta)} z dz , \]

\[\langle B_{66,B66} \rangle = \int \frac{h}{2} \frac{E}{2 (1+\theta)} (1,z)z dz , \; \langle F_{31,G_{31}} \rangle = \int \frac{h}{2} \frac{E}{2 (1+z)} z \left(\frac{\pi z}{h} \right) \sin \left(\frac{\pi z}{h} \right) (1,z)dz , \]

\[F_{24} = \int \frac{h}{2} \frac{E}{2 (1+z)} \cos \left(\frac{\pi z}{h} \right) dz , \; F_{15} = \int \frac{h}{2} \frac{E}{2 (1+z)} \cos \left(\frac{\pi z}{h} \right) dz , \]

\[P_{11} = \int \frac{h}{2} \frac{E}{2 (1+z)} \cos \left(\frac{\pi z}{h} \right) dz , \; P_{22} = \int \frac{h}{2} \frac{E}{2 (1+z)} \cos \left(\frac{\pi z}{h} \right) dz , \]

\[P_{33} = \int \frac{h}{2} \frac{E}{2 (1+z)} \cos \left(\frac{\pi z}{h} \right) dz \]

REFERENCES

[40] Mohammadmehr M., Atifeh S.J., Rousta Navi B., 2018, Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-
doi.org/10.1177/10775463211006512.

لینک های مفید

- عضویت در خبرنامه
- کارگاه‌های آموزشی
- سرویس ترجمه تخصصی STRS
- پلاگ مرکز اطلاعات علمی
- سرویس های ویژه

40% تخفیف به مناسبت سالروز تاسیس مرکز اطلاعات علمی