Comparison of Two Kinds of Functionally Graded Cylindrical Shells with Various Volume Fraction Laws for Vibration Analysis

M.R. Isvandzibaei*, P.J. Awasare

Department of Mechanical Engineering, Sinhgad College of Engineering, University of Pune, Ganeshkhind Rode, Pune-411007, India

Received 1 August 2009; accepted 29 October 2009

ABSTRACT

In this paper, a study on the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. The effects of the FGM configuration are taken into account by studying the frequencies of two FG cylindrical shells. Type I FG cylindrical shell has nickel on its inner surface and stainless steel on its outer surface and Type II FG cylindrical shell has stainless steel on its inner surface and nickel on its outer surface. The study is carried out based on third order shear deformation shell theory (TSDT). The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of configurations of the constituent materials on the frequencies. The properties are graded in the thickness direction according to the volume fraction power-law distribution. The analysis is carried out with strains-displacement relations from Love's shell theory. The governing equations are obtained using energy functional with the Rayleigh-Ritz method. Results are presented on the frequency characteristics and the influences of constituent various volume fractions for Type I and II FG cylindrical shells and simply supported boundary conditions on the frequencies.

Keywords: Vibration; Functionally gradient material; Third order shear deformation shell theory; Rayleigh-Ritz method

1 INTRODUCTION

CYLINDRICAL shells have found many applications in the industry. They are often used as load bearing structures for aircrafts, ships and buildings. The study of the vibration of cylindrical shells is an important aspect in the successful applications of the cylindrical shells. The study of the free vibrations of cylindrical shells has been carried out extensively. Arnold and Warburton [1], Ludwig and Krieg [2], Chung [3], Soedel [4], Forsberg [5], Bhimaraddi [6], Soldatos [7], Bert and Kumar [8], and Soedel [9] are among those who have studied the vibrations of cylindrical shells. The concept of functionally gradient materials (FGMs) was first introduced in 1984 by a group of materials scientists in Japan, [10, 11], as a means of preparing thermal barrier materials. Since then, FGMs have attracted much interest as heat-shielding materials. FGMs are made by combining different materials using power metallurgy methods [12]. They possess variations in constituent volume fractions that lead to continuous change in the composition, microstructure, porosity, etc. and this results in gradients in the mechanical and thermal properties [13, 14]. Studies on FGMs have been extensive but are largely confined to analysis of thermal stress and deformation [15-17]. Najafizadeh and Isvandzibaei [18] presented the vibration of functionally graded cylindrical shells based on higher order shear deformation plate theory with ring support. The advantage of FGMs is that desired mechanical properties can be tailored and this holds enormous application potential for FGMs.

In this paper, a study on the vibration of cylindrical shells composed of functionally gradient material (FGM) is presented. The considered functionally gradient material is composed of stainless steel and nickel where the volume fractions follow a power-law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions, the effects of configurations of the constituent materials on the frequencies for two

* Corresponding author, Tel.: +98 916 344 2982. E-mail address: evandzibaie@yahoo.com (M.R. Isvandzibaei).
kinds of FG cylindrical shell and the influence of simply supported boundary conditions on the frequencies. The
analysis of the functionally graded cylindrical shell is carried out using third order shear deformation shell theory
and solved using Rayleigh-Ritz method with obtained energy functional using an energy approach. The
displacement fields employed consist of some beam eigenfunctions of vibrations that guarantee satisfaction of edge
boundary conditions. Studies are carried out for functionally graded cylindrical shells with simply supported-simply
supported SS-SS boundary condition.

2 FUNCTIONALLY GRADIENT MATERIALS

Functionally gradient materials (FGM) are obtained by combining two or more materials. Most of the functionally
gradient materials are employed in high-temperature environments and many of the constituent materials may
possess temperature-dependent properties. The material \(P \) can be expressed as a function of temperature \([19]\), as

\[
P = P_e (P_1 T^{-1} + P_1 T + P_2 T^2 + P_3 T^3)
\]

(1)

where \(P_1, P_2, P_3 \) and \(P_e \) are the coefficients of temperature \(T(\text{K}) \) expressed in Kelvin and are unique to the
constituent materials. The material properties \(P \) of FGMs are a function of the material properties and volume
fractions of the constituent material, and are expressed as

\[
P = \sum_{j=1}^{k} P_j V_j
\]

(2)

where \(P_j \) and \(V_j \) are, respectively, the material property and volume fraction of the constituent material \(j \). The
volume fractions of all the constituent materials should add up to one, i.e.

\[
\sum_{j=1}^{k} V_j = 1
\]

(3)

For a cylindrical shell with a uniform thickness \(h \) and a reference surface at its middle surface, the volume
fraction can be written as

\[
V_j = \left(\frac{z + h/2}{h}\right)^N
\]

(4)

where \(N \) is the power-law exponent, \(0 \leq N \leq \infty \). For a functionally gradient material with two constituent
materials, the Young's modulus \(E \), Poisson ratio \(\nu \) and the mass density \(\rho \) can be expressed as

\[
E = (E_1 - E_2) \left(\frac{2z + h}{2h}\right)^N + E_2
\]

(5)

\[
\nu = (\nu_1 - \nu_2) \left(\frac{2z + h}{2h}\right)^N + \nu_2
\]

(6)

\[
\rho = (\rho_1 - \rho_2) \left(\frac{2z + h}{2h}\right)^N + \rho_2
\]

(7)

From these equations, when \(z = -h/2, E = E_2, \nu = \nu_2, \) and \(\rho = \rho_2 \), and when \(z = -h/2, E = E_1, \nu = \nu_1, \) and \(\rho = \rho_1 \). The material properties vary continuously from material 2 at the inner surface of the cylindrical shell to
material 1 at the outer surface of the cylindrical shell.
3 STRAINS-DISPLACEMENT RELATIONSHIPS

The strain-displacement relationships for a thin shell are [9],

\[
\varepsilon_{11} = \frac{1}{A_1 \left(1 + \alpha_3 \frac{1}{R_1}\right)} \left[\frac{\partial U_1}{\partial \alpha_1} + U_2 \frac{\partial A_1}{\partial \alpha_2} + U_3 \frac{A_1}{R_1} \right]
\]

\[
\varepsilon_{22} = \frac{1}{A_2 \left(1 + \alpha_3 \frac{1}{R_2}\right)} \left[\frac{\partial U_2}{\partial \alpha_2} + U_1 \frac{\partial A_2}{\partial \alpha_1} + U_3 \frac{A_2}{R_2} \right]
\]

\[
\varepsilon_{33} = \frac{\partial U_3}{\partial \alpha_3}
\]

\[
\varepsilon_{12} = \frac{A_1 \left(1 + \alpha_3 \frac{1}{R_1}\right)}{A_2 \left(1 + \alpha_3 \frac{1}{R_2}\right)} \left(\frac{U_1}{A_1 \left(1 + \alpha_3 \frac{1}{R_1}\right)} + \frac{1}{A_1 \left(1 + \alpha_3 \frac{1}{R_1}\right)} \frac{\partial U_3}{\partial \alpha_1} \right)
\]

\[
\varepsilon_{13} = A_1 \left(1 + \alpha_3 \frac{1}{R_1}\right) \frac{\partial}{\partial \alpha_3} \left(\frac{U_1}{A_1 \left(1 + \alpha_3 \frac{1}{R_1}\right)} + \frac{1}{A_1 \left(1 + \alpha_3 \frac{1}{R_1}\right)} \frac{\partial U_3}{\partial \alpha_1} \right)
\]

\[
\varepsilon_{23} = A_2 \left(1 + \alpha_3 \frac{1}{R_2}\right) \frac{\partial}{\partial \alpha_3} \left(\frac{U_2}{A_2 \left(1 + \alpha_3 \frac{1}{R_2}\right)} + \frac{1}{A_2 \left(1 + \alpha_3 \frac{1}{R_2}\right)} \frac{\partial U_3}{\partial \alpha_2} \right)
\]

where \(A_1\) and \(A_2\) are the fundamental form parameters or Lame parameters, \(U_1\), \(U_2\) and \(U_3\) are the displacement at any point \((\alpha_1, \alpha_2, \alpha_3)\), \(R_1\) and \(R_2\) are the radius of curvature related to \(\alpha_1\), \(\alpha_2\) and \(\alpha_3\) respectively. The third-order theory of Reddy used in the present study is based on the following displacement field

\[
U_1 = u_1(\alpha_1, \alpha_2) + \alpha_3 \psi_1(\alpha_1, \alpha_2) + \alpha_3^2 \psi_2(\alpha_1, \alpha_2) + \alpha_3^2 \beta_1(\alpha_1, \alpha_2)
\]

\[
U_2 = u_2(\alpha_1, \alpha_2) + \alpha_3 \phi_1(\alpha_1, \alpha_2) + \alpha_3^2 \phi_2(\alpha_1, \alpha_2) + \alpha_3^2 \beta_2(\alpha_1, \alpha_2)
\]

\[
U_3 = u_3(\alpha_1, \alpha_2)
\]

These equations can be reduced by satisfying the stress-free conditions on the top and bottom faces of the laminates, which are equivalent to \(\varepsilon_{13} = \varepsilon_{23} = 0\) at \(z = \pm \frac{h}{2}\). Thus

\[
U_1 = u_1(\alpha_1, \alpha_2) + \alpha_3 \phi_1(\alpha_1, \alpha_2) - C_1 \alpha_3^3 \left(- \frac{u_1}{R_1} + \phi_1 + \frac{\partial u_3}{A_1 \partial \alpha_1} \right)
\]

\[
U_2 = u_2(\alpha_1, \alpha_2) + \alpha_3 \phi_2(\alpha_1, \alpha_2) - C_1 \alpha_3^3 \left(- \frac{u_2}{R_2} + \phi_2 + \frac{\partial u_3}{A_2 \partial \alpha_2} \right)
\]

\[
U_3 = u_3(\alpha_1, \alpha_2)
\]
where \(C_1 = \frac{4}{3h^2} \). Substituting Eq. (15) into nonlinear strain-displacement relation (8) - (13) we get

\[
\begin{align*}
\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{23} \end{bmatrix} &= \begin{bmatrix} \varepsilon_{11}^0 \\ \varepsilon_{22}^0 \\ \varepsilon_{12}^0 \\ \gamma_{13}^0 \\ \gamma_{23}^0 \end{bmatrix} + \alpha_3 \begin{bmatrix} k_{11} \\ k_{22} \\ k_{12} \\ \gamma_{13} \gamma_{23} \end{bmatrix} + \alpha_3^2 \begin{bmatrix} k_{11}' \\ k_{22}' \\ k_{12}' \end{bmatrix} \\
\varepsilon_{13} &= \gamma_{13}^0 + \alpha_3^2 \gamma_{13}^0 + \alpha_3 \gamma_{13} \\
\varepsilon_{23} &= \gamma_{23}^0 + \alpha_3^2 \gamma_{23}^0 + \alpha_3 \gamma_{23}
\end{align*}
\]

(16)

(17)

4 FORMULATIONS

Consider a cylindrical shell which as shown in Fig. 1. \(R \) is the radius, \(L \) is the length and \(h \) is the thickness. The reference surface is chosen to be the middle surface of the cylindrical shell where an orthogonal coordinate system \(x, \theta, z \) is fixed. The deformations of the shell with reference to this coordinate system are denoted by \(U_1, U_2, \) and \(U_3 \) in the \(x, \theta, \) and \(z \) directions, respectively. For a thin cylindrical shell, plane stress condition can be assumed. The constitutive relation for a thin cylindrical shell is consequently given by the two-dimensional Hook’s law as

\[
\begin{bmatrix} \sigma \end{bmatrix} = [Q] \begin{bmatrix} \varepsilon \end{bmatrix}
\]

(18)

where \(\begin{bmatrix} \sigma \end{bmatrix} \) is the stress vector, \(\begin{bmatrix} \varepsilon \end{bmatrix} \) is the strain vector and \([Q] \) is the reduced stiffness matrix. The stress vector for plane stress condition is

\[
\begin{bmatrix} \sigma \end{bmatrix}^T = \begin{bmatrix} \sigma_{11} & \sigma_{22} & \sigma_{12} & \sigma_{13} & \sigma_{23} \end{bmatrix}
\]

(19)

where \(\sigma_{11} \) is the stress in \(x \) direction, \(\sigma_{22} \) the stress in the \(\theta \) direction and \(\sigma_{12} \) is the shear stress on the \(x\theta \) plane and \(\sigma_{13} \) is the shear stress on the \(xz \) plane and \(\sigma_{23} \) is the shear stress on the \(\theta z \) plane. The strain vector is defined as

\[
\begin{bmatrix} \varepsilon \end{bmatrix}^T = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{22} & \varepsilon_{12} & \varepsilon_{13} & \varepsilon_{23} \end{bmatrix}
\]

(20)

where \(\varepsilon_{11} \) is the strain in \(x \) direction, \(\varepsilon_{22} \) the strain in the \(\theta \) direction and \(\varepsilon_{12} \) is the shear strain on the \(x\theta \) plane and \(\varepsilon_{13} \) is the shear strain on the \(xz \) plane and \(\varepsilon_{23} \) is the shear strain on the \(\theta z \) plane. The reduced stiffness \([Q] \) matrix is given as

\[
\begin{bmatrix} Q_{11} & Q_{12} & 0 & 0 & 0 \\ Q_{12} & Q_{22} & 0 & 0 & 0 \\ 0 & 0 & Q_{44} & 0 & 0 \\ 0 & 0 & 0 & Q_{55} & 0 \\ 0 & 0 & 0 & 0 & Q_{66} \end{bmatrix}
\]

(21)
Comparison of Two Kinds of Functionally Graded Cylindrical Shells …

© 2009 IAU, Arak Branch

Fig. 1
Geometry of a cylindrical shell.

For an isotropic cylindrical shell, the reduced stiffness Q_{ij} ($i, j = 1, 2$ and 6) are defined as

$$Q_{11} = Q_{22} = \frac{E}{1 - \nu^2}$$

(22)

$$Q_{12} = \frac{\nu E}{1 - \nu^2}$$

(23)

$$Q_{44} = Q_{55} = Q_{66} = \frac{E}{2(1 + \nu)}$$

(24)

where E is the Young's modulus and ν is Poisson's ratio. For a thin cylindrical shell, the force and moment results are defined as

$$\{N\} = \{S\} \{\varepsilon\}$$

(28)

where $\{N\}$ and $\{\varepsilon\}$ are defined as

$$\{N\}' = \begin{bmatrix} N_{11} & N_{12} & N_{13} & N_{22} & N_{23} & M_{11} & M_{12} & M_{13} & M_{22} & M_{23} & P_{11} & P_{12} & P_{13} & P_{22} & P_{23} & Q_{13} & Q_{23} & R_{13} & R_{23} \end{bmatrix}$$

(29)

$$\{\varepsilon\}' = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} & \varepsilon_{22} & \varepsilon_{23} & \gamma_{12} & \gamma_{13} & \gamma_{23} & \gamma_{11} & \gamma_{22} & \gamma_{33} \end{bmatrix}$$

(30)

and $\{S\}$ is defined as
\[
[S] = \\
\begin{bmatrix}
A & B & E \\
B & D & F \\
E & F & H \\
E' & G & H' \\
A' & D' & E' \\
D' & F' & G
\end{bmatrix}
\]
(31)

where \(A, B, E, D, F, H, \) and \(G \) are the extensional, coupling and bending stiffness matrices and \(Q_{ij} \) are functions of \(z \) for functionally gradient materials. Here \(A_{ij} \) denote the extensional stiffness, \(D_{ij} \) the bending stiffness, \(B_{ij} \) the bending-extensional coupling stiffness and \(E_{ij}, F_{ij}, G_{ij}, H_{ij} \) are the extensional, bending, coupling, and higher-order stiffness. Defining

\[
\{A_{ij}, B_{ij}, D_{ij}, E_{ij}, F_{ij}, G_{ij}, H_{ij}\} = \int_{h/2}^{h/2} Q_{ij} \left\{1, \alpha_3, \alpha_3^2, \alpha_3^3, \alpha_3^4, \alpha_3^5, \alpha_3^6\right\} d\alpha_3
\]
(32)

The strain energy and kinetic energy of a cylindrical shell can be defined as

\[
U = \frac{1}{2} \iiint \{\varepsilon\}^T \{\sigma\} dV
\]
(33)

\[
T = \frac{1}{2} \iiint \rho \left[\left(\frac{\partial u_1}{\partial t} \right)^2 + \left(\frac{\partial u_2}{\partial t} \right)^2 + \left(\frac{\partial u_3}{\partial t} \right)^2 + \left(\frac{\partial \phi_1}{\partial t} \right)^2 + \left(\frac{\partial \phi_2}{\partial t} \right)^2 \right] dV
\]
(34)

where \(\rho \) is the mass density, \(\{\varepsilon\} \) is the strain vector and \(\{\sigma\} \) is the stress vector. By substituting from Eq. (18), the strain and kinetic energies can be written as

\[
U = \frac{1}{2} \int_{-\pi}^{\pi} \int_{0}^{2\pi} \int_{h/2}^{h/2} \{\varepsilon\}^T [S] \{\varepsilon\} R d\theta dx
d\]
(35)

\[
T = \frac{1}{2} \int_{-\pi}^{\pi} \int_{0}^{2\pi} \int_{-h/2}^{h/2} \rho_T \left[\left(\frac{\partial u_1}{\partial t} \right)^2 + \left(\frac{\partial u_2}{\partial t} \right)^2 + \left(\frac{\partial u_3}{\partial t} \right)^2 + \left(\frac{\partial \phi_1}{\partial t} \right)^2 + \left(\frac{\partial \phi_2}{\partial t} \right)^2 \right] \right] R d\theta dx
d\]
(36)

where \(\{\varepsilon\} \) is the strain vector defined in Eq. (30) and \([S] \) is the stiffness matrix defined in relation (31). The parameter \(\rho_T \) is the density per unit length defined as

\[
\rho_T = \int_{-h/2}^{h/2} \rho dz
\]
(37)

The displacement fields for a cylindrical shell can be written as

\[
\begin{align*}
 u_1 &= A \frac{\partial \phi(x)}{\partial x} \cos(n\theta) \cos(o t) \\
 u_2 &= B \phi(x) \sin(n\theta) \cos(o t) \\
 u_3 &= C \phi(x) \cos(n\theta) \cos(o t) \\
 \phi_1 &= D \frac{\partial \phi(x)}{\partial x} \cos(n\theta) \cos(o t) \\
 \phi_2 &= E \phi(x) \sin(n\theta) \cos(o t)
\end{align*}
\]
(38)
where, A, B, C, D and E are the constants denoting the amplitudes of the vibrations in the x, θ and z directions, $\phi(x)$ is the axial function that satisfies the geometric boundary conditions, n denotes the number of circumferential waves in the mode shape and ω is the natural angular frequency of the vibration. The axial function $\phi(x)$ is chosen as the beam function as $\phi(x) = \phi'(x) = 0$. To determine the natural frequencies, the Rayleigh-Ritz method is used. The energy functional Π is defined by the Lagrangian function as $T_{\text{max}} - U_{\text{max}}$.

Substituting Eq. (38) into Eqs. (35) and (36) and minimizing the energy functional Π with respect to the unknown coefficients are as follows

$$\frac{\partial \Pi}{\partial A} = \frac{\partial \Pi}{\partial B} = \frac{\partial \Pi}{\partial C} = \frac{\partial \Pi}{\partial D} = \frac{\partial \Pi}{\partial E} = 0$$

In Eq. (41), T_{max} and U_{max} are the maximum kinetic energy and strain energy, respectively. In Eq. (42), the five governing eigenvalue equations can be obtained. These five governing eigenvalue equation can be expressed in matrix form as

$$
\begin{bmatrix}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} \\
C_{21} & C_{22} & C_{23} & C_{24} & C_{25} \\
C_{31} & C_{32} & C_{33} & C_{34} & C_{35} \\
C_{41} & C_{42} & C_{43} & C_{44} & C_{45} \\
C_{51} & C_{52} & C_{53} & C_{54} & C_{55}
\end{bmatrix}
\begin{bmatrix}
A \\
B \\
C \\
D \\
E
\end{bmatrix}
= 0
$$

The eigenvalue equations are solved by imposing the non-trivial solutions condition and equating the determinant of the characteristic matrix $[C_{ij}]$ to zero. Expanding this determinant, a polynomial in even powers of ω is obtained

$$\beta_0 \omega^{10} + \beta_1 \omega^8 + \beta_2 \omega^6 + \beta_3 \omega^4 + \beta_4 \omega^2 + \beta_5 = 0$$

where $\beta_i (i = 0,1,2,3,4,5)$ are some constants. Eq. (44) is solved and five positive and five negative roots are obtained. The five positive roots obtained are the natural angular frequencies of the cylindrical shell in the x, θ, and z directions. The smallest of the five roots is the natural angular frequency studied in the present study.

© 2009 IAU, Arak Branch
5 RESULTS AND DISCUSSION

In this paper, studies are presented on the vibration of simply supported functionally graded (FG) cylindrical shell. The functionally gradient material (FGM) considered is composed of stainless steel and nickel and its properties are graded in the thickness direction according to the volume fraction power-law distribution. The influence of constituent volume fractions is studied by varying the volume fractions of the stainless steel and nickel. This is carried out by varying the value of the power law exponent N. The effects of the FGM configuration are investigated by studying the frequencies of two FG cylindrical shells. Type I FG cylindrical shell and Type II FG cylindrical shell, Type I FG cylindrical shell has nickel on its inner surface and stainless steel on its outer surface and Type II FG cylindrical shell has stainless steel on its inner surface and nickel on its outer surface. The material properties for stainless steel and nickel, calculated at $T = 300 \, K$, are presented in Table 1. To validate the present analysis, results for cylindrical shells are compared with Chung [3]. The comparisons show that the present results agreed well with those in the literature. Tables 3 and 4 show the variations of the volume fractions f_{NV} of nickel and f_{SSV} of stainless steel, respectively, in the thickness direction z for Type I FG cylindrical shell. In the Table 1 the volume fraction of Stainless Steel V_{SSV} increased from 0 at $z = -0.5h$ to 1 at $z = 0.5h$ and in the Table 2 the volume fraction for nickel V_{NV} decreased from 1 at $z = -0.5h$ to 0 at $z = 0.5h$ and the material properties on the inner surface of the Type I FG cylindrical shell are those of nickel and on the outer surface are those of stainless steel.

Table 1

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Stainless Steel</th>
<th>Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E (N/m2)</td>
<td>ν</td>
</tr>
<tr>
<td>P_0</td>
<td>201.04×10^9</td>
<td>0.3262</td>
</tr>
<tr>
<td>P_1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_2</td>
<td>3.079×10^{-4}</td>
<td>-2.002 \times 10^{-4}</td>
</tr>
<tr>
<td>P_3</td>
<td>-6.534×10^{-7}</td>
<td>3.797×10^{-7}</td>
</tr>
<tr>
<td>P_4</td>
<td>2.07788×10^{11}</td>
<td>0.317756</td>
</tr>
</tbody>
</table>

Table 2

Comparison of frequency (rad/s) parameter $\Omega = \omega R \sqrt{(1 - \nu \rho) / E}$ for a clamped-clamped isotropic cylindrical shell

<table>
<thead>
<tr>
<th>L / R</th>
<th>R / h</th>
<th>n</th>
<th>ω</th>
<th>Chung [3]</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>500</td>
<td>4</td>
<td>327.5406</td>
<td>0.01508</td>
<td>0.0154656</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>2</td>
<td>1254.2173</td>
<td>0.05787</td>
<td>0.0592211</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>3</td>
<td>1380.366</td>
<td>0.3117</td>
<td>0.235887</td>
</tr>
</tbody>
</table>

Table 3

Variations of the volume fractions V_{ssv}, in the thickness direction z for a Type I FG cylindrical shell

<table>
<thead>
<tr>
<th>z</th>
<th>V_{ssv}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N=0.5$</td>
</tr>
<tr>
<td>-0.5h</td>
<td>0</td>
</tr>
<tr>
<td>-0.4h</td>
<td>0.3162</td>
</tr>
<tr>
<td>-0.3h</td>
<td>0.4472</td>
</tr>
<tr>
<td>-0.2h</td>
<td>0.5477</td>
</tr>
<tr>
<td>-0.1h</td>
<td>0.6324</td>
</tr>
<tr>
<td>0</td>
<td>0.707</td>
</tr>
<tr>
<td>0.1h</td>
<td>0.7745</td>
</tr>
<tr>
<td>0.2h</td>
<td>0.8366</td>
</tr>
<tr>
<td>0.3h</td>
<td>0.8944</td>
</tr>
<tr>
<td>0.4h</td>
<td>0.9486</td>
</tr>
<tr>
<td>0.5h</td>
<td>1</td>
</tr>
</tbody>
</table>
At \(z \) away from \(z = 0.5h \), the rate of decrease of \(V_{fN} \) for \(N<1 \) is high compared to \(N>1 \), and at \(z \) closer to \(z = 0.5h \), the rate of decrease of \(V_{fN} \) for \(N>1 \) is much higher than for \(N<1 \). On the hand for \(V_{fN} \), at \(z \) away from \(z = 0.5h \), the rate of increase for \(N<1 \) is high compared to \(N>1 \), and at \(z \) closer to \(z = 0.5h \), the rate of increase of \(V_{fN} \) for \(N>1 \) is much higher than for \(N<1 \). Also, when \(V_{fN} \) is high, \(V_{fN} \) is low, and vice versa. At any \(z \), the sum of \(V_{fN} \) and \(V_{fN} \) is 1. For the Type II FG cylindrical shell the behaviors of \(V_{fN} \) and \(V_{fN} \) are opposite to that the Type I FG cylindrical shell. In this section variations of natural frequencies with the circumferential wave number \(n \) for two Types functional graded cylindrical shells with different volume fractions are presented.

Table 4
Variations of the volume fractions \(V_{fN} \), in the thickness direction \(z \) for a Type I FG cylindrical shell

<table>
<thead>
<tr>
<th>(z)</th>
<th>(V_{fN})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N=0.5)</td>
</tr>
<tr>
<td>-0.5h</td>
<td>1</td>
</tr>
<tr>
<td>-0.4h</td>
<td>0.6837</td>
</tr>
<tr>
<td>-0.3h</td>
<td>0.5227</td>
</tr>
<tr>
<td>-0.2h</td>
<td>0.4522</td>
</tr>
<tr>
<td>-0.1h</td>
<td>0.3675</td>
</tr>
<tr>
<td>0</td>
<td>0.2928</td>
</tr>
<tr>
<td>0.1h</td>
<td>0.2254</td>
</tr>
<tr>
<td>0.2h</td>
<td>0.1633</td>
</tr>
<tr>
<td>0.3h</td>
<td>0.1055</td>
</tr>
<tr>
<td>0.4h</td>
<td>0.0513</td>
</tr>
<tr>
<td>0.5h</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5
Variations of natural frequencies with the circumferential wave number \(n \) for a Type I FG cylindrical shell \(n=1, h/R=0.002, L/R=20 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(\text{Hz}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N=0.5)</td>
</tr>
<tr>
<td>3</td>
<td>4.190</td>
</tr>
<tr>
<td>4</td>
<td>7.101</td>
</tr>
<tr>
<td>5</td>
<td>11.345</td>
</tr>
<tr>
<td>7</td>
<td>22.848</td>
</tr>
<tr>
<td>8</td>
<td>29.052</td>
</tr>
<tr>
<td>9</td>
<td>38.219</td>
</tr>
<tr>
<td>10</td>
<td>47.347</td>
</tr>
</tbody>
</table>

Table 6
Variations of natural frequencies with the circumferential wave number \(n \) for a Type II FG cylindrical shell \(n=1, h/R=0.002, L/R=20 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(\text{Hz}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N=0.5)</td>
</tr>
<tr>
<td>2</td>
<td>32.679</td>
</tr>
<tr>
<td>3</td>
<td>91.388</td>
</tr>
<tr>
<td>4</td>
<td>174.998</td>
</tr>
<tr>
<td>5</td>
<td>282.855</td>
</tr>
<tr>
<td>6</td>
<td>414.818</td>
</tr>
<tr>
<td>7</td>
<td>570.840</td>
</tr>
<tr>
<td>8</td>
<td>750.900</td>
</tr>
<tr>
<td>9</td>
<td>954.987</td>
</tr>
<tr>
<td>10</td>
<td>1183.096</td>
</tr>
</tbody>
</table>

© 2009 IAU, Arak Branch
Table 7
Variations of natural frequencies at different L/R ratios for a Type I FG cylindrical shell $m=1$, $h/R=0.002$

<table>
<thead>
<tr>
<th>L/R</th>
<th>f(Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N=0.5$</td>
</tr>
<tr>
<td>0.2</td>
<td>432.864</td>
</tr>
<tr>
<td>0.5</td>
<td>172.483</td>
</tr>
<tr>
<td>1</td>
<td>85.837</td>
</tr>
<tr>
<td>2</td>
<td>42.628</td>
</tr>
<tr>
<td>10</td>
<td>8.456</td>
</tr>
<tr>
<td>20</td>
<td>4.190</td>
</tr>
<tr>
<td>50</td>
<td>1.466</td>
</tr>
<tr>
<td>100</td>
<td>0.550</td>
</tr>
</tbody>
</table>

Table 8
Variations of natural frequencies at different L/R ratios for a Type II FG cylindrical shell $m=1$, $h/R=0.002$

<table>
<thead>
<tr>
<th>L/R</th>
<th>f(Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N=0.5$</td>
</tr>
<tr>
<td>0.2</td>
<td>424.314</td>
</tr>
<tr>
<td>0.5</td>
<td>169.469</td>
</tr>
<tr>
<td>1</td>
<td>84.335</td>
</tr>
<tr>
<td>2</td>
<td>41.883</td>
</tr>
<tr>
<td>50</td>
<td>1.439</td>
</tr>
<tr>
<td>100</td>
<td>0.541</td>
</tr>
</tbody>
</table>

Tables 5 and 6 show variations of natural frequencies for Type I FG cylindrical shell and Type II FG cylindrical shell. The influence of the constituent volume fraction on the frequencies for Type I and II FG cylindrical shells has been found to be different. For the Type I FG cylindrical shells, the natural frequencies decreased when N increased, and for the Type II FG cylindrical shells, the natural frequencies increased when N increased. In Types I and II FG cylindrical shells, the natural frequencies for all values of N lie between those for a stainless steel and nickel cylindrical shells. For $N < 1$, the natural frequencies for Type I FG cylindrical shells are higher than for Type II FG cylindrical shells and for $N > 1$, the natural frequencies for Type II FG cylindrical shells are higher than Type I FG cylindrical shells. Tables 7 and 8 show variations of natural frequencies at different L/R ratios for Type I and Type II FG cylindrical shells. In Type I FG cylindrical shell, the natural frequencies decreased when N increased, and for the Type II FG cylindrical shells, the natural frequencies increased when N increased.

6 CONCLUSIONS

A study on the vibration of functionally graded (FG) cylindrical shell composed of stainless steel and nickel has been presented. The study was carried out for two types of functionally graded cylindrical shells where the configurations of the constituent materials in the functionally graded cylindrical shells are different. One is termed as a Type I FG cylindrical shell and has properties that vary continuously from nickel on its inner surface to stainless steel on its outer surface. The other is termed as a Type II FG cylindrical shell and has properties that vary continuously from stainless on its inner surface to nickel on its outer surface. The analysis of the functionally graded cylindrical shell is carried out using third order shear deformation shell theory and solved using Rayleigh-Ritz method with energy functional, obtained using an energy approach. Studies were made on the natural frequencies, the influence of constituent volume fractions, the effects of configurations of the constituent materials on the frequencies for two kinds of FG cylindrical shell and the influence of boundary conditions simply support on the frequencies. The study showed that the constituent volume fractions and the configurations of the constituent materials affect the natural frequencies. However, the functionally graded cylindrical shells exhibit interesting frequency characteristics when the constituent volume fractions are varied. This is done by varying the power law exponent N. The influence of the constituent volume fraction on the frequencies for Type I and II FG cylindrical...
shells has been found to be different. For the Type I FG cylindrical shells, the natural frequencies decreased when N increased, and for the Type II FG cylindrical shells, the natural frequencies increased when N decreased. In Types I and II FG cylindrical shells, the natural frequencies for all values of N lie between those for a stainless steel and nickel cylindrical shells. For $N < 1$, the natural frequencies for Type I FG cylindrical shells are higher than for Type II FG cylindrical shells, and for $N > 1$, the natural frequencies for Type II FG cylindrical shells are higher than Type I FG cylindrical shells. Thus, the constituent volume fractions and the configurations of the constituent materials affect the natural frequencies.

REFERENCES