The Foil Parameters from Calibration of the Imaging Bolometer Foil

H. Parchamy1, B. Peterson1, H. Hayashi1, N. Ashikawa1 and Z. Ghoranneviss2

1National Institute for Fusion Science, Toki-shi, Gifu-Ken, Japan
2Department of Electrical Engineering Tohoku University, Sendai, Japan

Abstract

We obtained the local foil properties of the imaging bolometer foil such as the thermal diffusivity, $\kappa$, and the product of the thermal conductivity, $k$, and the thickness, $t_f$, by calibrating some parts of the foil. The parameters are determined by finite element modeling (FEM) of the foil temperature and comparing the solution to the experimental results. Calibration of the foil was made in situ using a He-Ne laser as a known radiation source to heat the foil. The thermal images of the foil are provided by an infrared (IR) camera. In this work we apply this calibration technique to investigate the variation of the foil parameters. Variation in the local temperature rise of the foil due to local heating by the laser beam indicates a variation of the foil parameters $\kappa$, $k$ and $t_f$.

Introduction

In the Large Helical Device (LHD) the infrared imaging video bolometer (IRVB), using a segmented-absorber was applied to measure the plasma radiation in two dimensions [1, 2]. This concept showed some advantages of the segmented mask infrared imaging bolometer (SIB) compared to resistive bolometers and it was easy to calibrate the foil for each pixel due to separate channels, and the foil is supported by the strong mask against differences in pressure, however it had some problems such as shadowing of the foil by the mask and losses thermal energy due to thermal contact. The energy losses due to radiative process are measured, with an infrared imaging video bolometer (IRVB) without using a mask [3-5]. The laser calibration could compensate for the complications of the foil calibration due to the absence of a segmented mask frame.

The calibration technique of the IRVB gives confidence in the measured values of the plasma radiation. In a separate work, the spatial calibration data will be used to produce the bolometer intensity data to be utilized in the tomographic analyses. The local foil properties of the foil such as the thermal diffusivity, $\kappa$, and the product of the thermal conductivity, $k$, and the thickness, $t_f$, are obtained by the foil calibration for one part on the foil when the foil is heated by the laser power [6].

Here, the variation of the local foil properties of the imaging bolometer foil during an in-situ calibration investigation for various locations on the foil is presented. The parameters depending on the spatial position on the foil are determined by finite element modeling of the foil temperature and comparison to the experimental results.

The single graphite-coated gold foil

A single graphite-coated gold foil as an absorber of the broadband radiation from the plasma is used. The effective area of the gold foil with a nominal thickness of 2.5 $\mu$m is $9\times7$ cm$^2$. The IR camera side of the foil is blackened with graphite. The infrared (IR) camera (with a tangential view) that is shielded by a 2 cm thickness of soft iron, 1.5 cm of lead and 9 cm of the polyethylene against the effects of magnetic field, gammas particles and neutrons, respectively, is installed outside of the vacuum vessel to provide thermal images of the foil. The laser power is directed to the foil by a gold IR mirror and a beam steerer. The foil view by the IR camera is observed on a PC monitor where it is divided into 11×14 sections. The He-Ne laser beam is focused on various locations. The thermal images consist of a 15×15 pixel IR view of the foil (~1 cm$^2$ area of the foil) when the total IR camera pixel number is 168×128. The calibration technique is applied for various positions on the gold foil.

Data analysis results from the foil calibration

The foil calibration is carried out in order to obtain local foil properties to determine the thermal diffusivity, $\kappa$, and the product of the thermal conductivity, $k$, and the thickness, $t_f$ of the foil. The foil calibration is made through various steps such as determining the location of the laser spot on the foil, and converting the IR thermal radiation data from the IR camera to foil temperature. This is done by using the IR camera calibration when the blackened plate temperature data from a thermocouple and the IR camera data is fit to the Stefan-Boltzmann law [6].
In the previous article [6] the IR camera calibration coefficients $a$ and $b$ had a negligible temperature dependence in the range of temperatures used. The calibration factors are corrected to $a = 7.34 \times 10^{-8}$ W/K$^4$ and $b = 8077.58$ in the range of experiment temperatures (350-370 K). The resulting IR camera data and plate temperature when they are fit to the Stefan-Boltzmann law to find the calibration coefficients are shown in Fig. 1.

For the foil calibration using a HeNe laser, the laser power is necessary for solving the heat diffusion equation in two dimensions analytically by using the finite element model (FEM). The laser power is directed into the vacuum chamber through the ZnSe IR window to the foil. The laser power decreased after passing through the IR window. By reproducing the calibration on a test stand with a similar ZnSe window the transmission through the ZnSe window could be estimated for each laser position on the foil. The handheld laser power meter is calibrated using a LASERPAD$^TM$ PC.

The spatial variation of the foil parameters $k$, $K$ and $t_f$ from in situ calibration of the imaging bolometer foil is shown in Fig. 2. The local temperature rise ($\Delta T$) from the foil is shown in Fig. 2 (a). The foil temperature rise was taken from the peak of a 2D Gaussian fitted to the temperature profile from the IR camera. The IR thermal data are averaged over 200 time frames of the steady state data. The FEM is used for solving of the two-dimensional heat diffusion equation with a constant thickness and thermal parameters of the foil and approximately 2000 spatial points assuming a constant temperature at the foil boundary. The FEM used the measured beam profile, fit to a 2-D Gaussian, as the heat source term.

The appropriate value of the thickness ($t_f$) of the foil from the experimental value of the $\Delta T$ is found when a second order polynomial is fitted to the $kt_f$ and $\Delta T$ data from the FEM. The spatial variation of $t_f$ is shown in Fig. 2 (b). The standard deviation was found by propagating the IR camera measurement error through the analysis. However this estimate of the error is less than 0.1 µm. In Fig. 2 (b) a discrepancy between the $t_f$ from various locations with nominal value of the foil thickness ($t_f = 2.5$ µm) has been observed. These discrepancies decreased from the edge (near the frame) to the center of the foil.

The thermal diffusivity ($k$) is also determined by various processes such as fitting the experimental foil temperature data during the decay to the modified exponential equation, fitting the FEM calculation numerical data decay of the foil temperature when the radiation source term in the heat diffusion equation is zero to the modified exponential equation. A second order polynomial is fitted to the $k$ and $\tau$ numerical data from the FEM to find the appropriate value of the thermal diffusivity of the foil from the experimental value of the decay time. The spatial variation of $k$ with standard deviation is shown in Fig. 2 (c). The discrepancies between the various thermal diffusivities from various locations on the foil with...
nominal value of the thermal diffusivity of the foil \( (\kappa_{\text{gold}} = 1.27 \text{ cm}^2/\text{s}) \) has been observed. These discrepancies also decreased from the edge to the center of the foil.

**Discussion**

The foil in situ calibration is carried out in order to obtain the local foil properties for the tokamak imaging bolometer foil. By comparing the results from the FEM solution to the heat diffusion equation with the experimental values of the foil temperatures and its decays the parameters of the foil are determined for various locations on the foil.

The spatial variation of the foil parameters is obtained by applying this calibration technique to investigate various sections of the foil. Significant variation in the local temperature rise of the foil due to local heating by a laser beam and in its decays indicates a spatial variation of the foil parameters: the thermal diffusivity, the thermal conductivity and the thickness of the foil. One notes that the differences in the factor of \( k_{\text{f}} \) from the expected nominal values for two nearby locations on the foil, in the center area of the foil, were 10% and 28%.

The variation in \( k_{\text{f}} \) and the trend of increasing \( \kappa \) going from the edge to the center are similar to those seen in the previous work (although the standard deviations were not calculated in that case), but the level of \( \kappa \) at the center was higher than the previous case and close to the nominal value. The discrepancy between the measured temperature rise and the temperature rise predicted by the FEM, in particular at the edge, may be due to improper modeling of the thermal contact between the foil and the frame. In other words, the thermal conduction between the frame and foil may be worse in actuality than the perfect thermal contact assumed by the foil and may also be non-uniform. The obtained thermal diffusivity was also not near to the expected nominal value for gold on some locations, in particular near the edge of the foil.

**Acknowledgment**

The authors are grateful to the support given by the MEXT Grant-in-Aid # 16082207 and also MEXT Grants–in-Aid #16560729 & #16082207.

**Referentes**