Anti-Obesity, Fat Lowering and Liver Steatosis Protective Effects of Ferula asafoetida Gum in Type 2 Diabetic Rats: Possible Involvement of Leptin

Hossain Azizian¹, Mohammad Ebrahim Rezvani²*, Mansour Esmaeilidehaj², Seyyed Majid Bagheri¹

Introduction

Both overweight and obesity are health problems that increase mortality and morbidity rates. WHO recently reported that up to 2015, near 2.3 billion people will be overweight and about 700 billion will be obese (1). Extensive researches are required to prevent this alarming increase in weight abnormality. The most consequences of the overweight and obesity are cardiovascular and endocrine diseases, especially type 2 diabetes (2, 3).

Control of weight gain is an important strategy in reducing diabetes incidence. Recently, herbal drugs have been used as a complementary and alternative medicinal care. This study was conducted to determine the effect of Ferula asafoetida on weight gain, fat accumulation, liver steatosis and leptin level.

Abstract

Objective: Control of weight gain is an important strategy in reducing the diabetes incidence. Recently, herbal drugs have been used as a complementary and alternative medicinal care. This study was conducted to determine the effect of Ferula asafoetida on weight gain, fat accumulation, liver steatosis and leptin level.

Materials and Methods: All rats of control and treatment groups received daily tap water (P.O) as vehicle mixed with fructose 10%. Two treatment groups received FAF oleo-gum resin at doses of 25 or 50 mg/kg (P.O). Normal rats received only tap water and standard chow food. Body weights, abdominal fat, size of epididymal adipocyte and serum leptin were recorded.

Result: Administration of Ferula asafoetida significantly decreased body weights, abdominal fat and size of epididymal adipocyte compared to untreated rats (P<0.05). Levels of serum leptin were significantly decreased in treated rats (P<0.05).

Conclusion: This study showed that Ferula asafoetida extract has anti-obesity, fat lowering effects and can prevent liver steatosis in type 2 diabetic rats. Reduction of serum leptin is associated with protective effects of Ferula asafoetida in obese diabetic rats.

Keywords: Ferula asafoetida, Diabetes mellitus, Obesity, Adipocyte, Liver, Rat
(6), Gymnema sylvestre (7) and others that recently reviewed (8), reported in the literature. Ferula asafoetida (FAF) is native plant of Iran that grows up to the height of 2 meters. Its usage part is oleo-gum-resin that is acquired by incision of its root or stem (9-11). Among other compounds in the dried gum can be pointed to the following: coumarin derivatives, assafeotidinol A and B, sesquiterpene, arabinose, rhamnose and ferulic acid (12-14). Oleo-gum-resin of FAF has already been traditionally used in Asia for treatment of epilepsy, bronchitis, wood coughing, amenorrhea, and as a contraceptive remedy (15). Experimental and clinical studies also reported its anticarcinogenic, hypotensive, antiviral, antidiabetic, antioxidant, contraceptive, antifungal, antithetapotoxicity and anticoagulant properties (16). In spite of some studies reported usage of this herbal medicine for treatment of type 1 diabetes, few studies have been conducted to clarify its anti-obesity effect and underlying mechanisms. Additionally, in a pilot study, we noted a significant weight loss in diabetic rats treated with FAF oleo-gum-resin. Based on these evidences and given to extensive use of this remedy in Asia, we conducted this study to determine its anti-obesity effect and possible involvement of leptin.

Materials and Methods

Animals

Male Wistar rats, weighing 285-300 g were used in this study. Rats were maintained under standard conditions (12/12 light-dark cycle, 20-24°C, 55% humidity) without limitations of food and drink in animal house of Shahid Sadoughi University of Medical Sciences, Faulty of medicine, Iran. All efforts were considered to minimize the number of treated rats and their suffering. All experimental procedures and treatments were in accordance with the Shahid Sadoughi University guidelines for laboratory animal care and use.

Plant gum extract

Ferula asafoetida gum was collected from specimen number was kept in record (O 2343) at the Medicine Research Center of Shahid Sadoughi University of Medical Sciences, Yazd, Iran. The powdered dried gum (10 g) was soaked in distilled water (100 ml) at room temperature and filtered for daily use.

Diabetes induction and treatment protocol

All stages of this research were done in department of physiology, faculty of medicine, Shaid Sadoughi University of medical sciences as a MSc student thesis (thesis no. 82401). Twenty-one rats were randomly allocated in three groups. All groups were treated daily with fresh fructose 10% in drinking water, for eight weeks. Rats of control group received daily tape water as vehicle, and two treatment groups received FAF oleo-gum resin at doses of 25 or 50 mg/kg. Treatment was started at the beginning of fructose feeding. Induction of diabetes was authenticated by fasting blood glucose (FBS) and intraperitoneal (I.P.) glucose tolerance tests (IPGT). Control rats were fasted overnight and injected 2 g/kg glucose (I.P.). After 30 minutes, blood sample obtained from tail vein and level of plasma glucose was measured. Plasma glucose levels greater than 140 mg/dl were considered as diabetes induction (17).

Measurements of body, abdominal fat and liver weights

Body weights were measured every day during the fructose 10% feeding. At the end of experiments, rats were weighted and deeply anesthetized with sodium thiopental (Nani pharmaceuticals Co, England). Liver and abdominal fat mass were exactly removed and weighted.

Histological assessment of epididymal and liver fat

Samples of epididymal fat and liver tissues were frozen at −70°C for histological analysis. Frozen tissues were sliced (50 mm) and fixed in 10% buffered formalin. All slices were embedded in paraffin. Then, the slices were again cut into small size at a thickness of 4 µm for staining. Hematoxylin-Eosin and Oil red O
staining methods were used. Adipocyte sizes were measured in randomly chosen microscopic areas from independent animals using a Zeiss microscope system, and average adipocyte size was determined using Photoshop software, Adobe Systems, Mountain View, CS5, CA and calculated as number of pixel per adipocyte cell in the scope. Also, adipocyte depots in liver tissue were determined (18).

Assessment of leptin level

Level of serum leptin was measured at the end of experiments. Serum leptin level of normal and treated rats were measured using the Rat Leptin RIA-Kit (DRG Instruments GmbH, Marburg, Germany). RIA assay of leptin level in serum was accorded to kit instruction.

Acute toxicity study

The rats were overnight fasted for FAF treatment. Extract was administered orally to FAF treated groups in ascending manner doses 50 and 100 mg/kg respectively. For the signs of toxicity, rats were monitored 4 times per day for 2 days. Additionally, the obtained data were the base and rationale for the doses that selected in this study.

Statistical Analysis

All data were presented as mean ± SEM. Data were analyzed using one-way ANOVA with GraphPad Prism (San Diego, CA). Post-tests were conducted with Dennett's test. P<0.05 were considered statistically significant.

Result

Diabetes induction

As shown in figure 1, control rats treated with fructose 10% for 8 weeks indicated significant increase in FBS (P<0.05) and IPGT (P<0.01). Thus, diabetes development was confirmed in this study.

Effects of FAF extract on body, abdominal fat and liver weights

Body weight was measured every day for 2 weeks. As appeared in fig. 2, FAF extract at doses 25 and 50 mg/kg decreased body weight (P<0.01), abdominal fat and liver weight (P<0.05). Weight of control but not FAF-treated rats was increased during 2 weeks of fructose administration.

Effect of FAF extract on epididymal fat and liver histological changes

Liver fat density was studied using histological staining. Lipid dense droplet is an index of hepatic steatosis. FAF treated rats indicated low hepatic steatosis when compared to control group (P<0.05). Also, size of abdominal adipocytes in FAF treated group was significantly lesser than that of control fructose fed rats (P<0.05) (Fig. 3).

Effects of FAF extract on leptin level

FAF at doses 25 and 50 mg/kg reduced the serum level of leptin. The leptin levels of the FAF treated groups at both doses were significantly lower (P<0.05) compared to that of control fructose fed rats (P<0.05) (Fig. 4).

Acute toxicity of FAF extract

Forty-eight hours following administration of 50 and 100 mg/kg of FAF extract no sign of toxicity or incidence of death was observed. Hence, it was argued to be safe at these doses. Thus, we selected doses of 25 and 50 mg/kg because they are safe.
Discussion
The acute toxicity study revealed that the doses of drugs in this experiment are safe and did not cause toxic signs or behavioral deficits. Data of this study showed that FAF extract elicited significant anti-obesity, fat lowering and

![Graph 1](image1)

Figure 2: Effects of FAF gum at doses of 25 and 50 mg/kg on body weight alterations in high fructose fed rats. Values are mean ± SEM, (eight animals per group). One-way ANOVA followed by Dennett's post test: *P<0.05 ** P<0.01 and ***P<0.001 are the significant levels. a and b represent when compared to control and FFD + Vehicle groups respectively. All data are presented as mean ± SEM, (n=8). FFD: fructose fed diet.

![Graph 2](image2)

Figure 3: Effects of FAF gum extract on histological adipocyte size and liver fat depots in obese rats fed with fructose. Histological analysis showed that the adipocyte size changed less in the groups treated with FAF gum. Percent of fat depots were significantly accentuated in fructose fed rats and FAF gum at doses 25 and 50 mg/kg can reversed this elevating in density of depots. One-way ANOVA followed by Bonferroni post test were applied. *P < 0.05 is the significant levels. a and b represent when compared to control and FFD + Vehicle groups respectively. FFD: fructose fed diet. All data are presented as mean ± SEM, (n=3).
Protective Effects of Ferula asafoetida in Type 2 Diabetic Rats

Liver steatosis protective effects in type 2 diabetic rats. Additionally, along with increases in body weight in type 2 diabetes, accumulation of fat in mesenteric and epididymal area was enhanced. Also, the level of serum leptin was associated with body weight and fat deposition; so that high level of serum leptin in fructose-fed rats that did not receive FAF treatment can be attributed to these factors. Fructose supplementation of food leads to positive energy balance and elevated nonestrified fatty acids in serum. Positive energy balance and hyperlipidemia lead to obesity and hepatosteatosis (23). However, increase in fat tissue of fructose fed rats induced high level of serum leptin. FAF inhibited the obesity and high fat tissue caused by fructose treatment in rats. Also, FAF reduced the level of leptin appropriate to its fat lowering effect. Hepatosteatosis was significantly ameliorated in obese type 2 diabetic rats treated with FAF at doses 25 and 50 mg/kg.

In animal studies, there are considerable evidences indicate that high fructose diet induces diabetes and obesity (19). Type 2 diabetes, obesity, decrease in insulin sensitivity and cardiovascular disease occur concurrently (20). Being obese is one of the main causes of diabetes and its complications. Despite the large data regarding control of obesity, it is hard to recommend protective pharmaceutical or nutraceutical regimens that have no complications especially in diabetic patients. Recently, use of traditional remedies such as Ilex paraguariensis (4), galega officinalis (5), Allium cepa Linn. (6), Gymnema sylvestre (7) and Cornifruitus (8) for control of diabetes and obesity have been grown up. Anti-diabetic and hypoglycemic effects of FAF extract were observed in type 1 diabetes (21). The main objective of this study was to determine the role of FAF extract in weight control and decrease of fat accumulation in type 2 diabetic rats.

Leptin is a peptide that is produced mainly by fat tissue and rate of leptin production is depending on triglyceride content of adipocytes (22). Because leptin concurrently reduces food intake and body weight, elevation in leptin level within obese subjects is attributed to the phenomenon named leptin resistance which leads to increased food intake and becoming more overweight and obese (23). Our data indicated that high fructose diet can elicit fat accumulation, obesity and increased level of leptin in diabetic rats. In our study, the high level of leptin in the obese diabetic rats may be related to leptin resistance. Indeed, the obesity induced by high fructose diet in diabetic rats activates cellular processes lead to leptin resistance (18).

Control of diabetes type 2, as a chronic disorder, needs to pharmacotherapy for long time periods. Indeed, metabolic diseases and diabetes are becoming more common as the population ages and there will be more need for drugs that reduce risk factors of the diseases without complications. Obesity is one of the risk factors for the disease and main goal of this study was reduction of the risk factors through weight management. FAF could decrease adipocyte proliferation in fat tissue such as abdominal area and reduce obesity. Previous studies revealed that FAF administration at dose of 50 mg/kg shown...
anti-hyperglycemic but not anti-hyperlipidemic effects in streptozotocin-diabetic rats (24). Since antioxidative agents are involved in attenuating the diabetes symptoms, the anti-diabetic, anti-obesity and liver steatosis preventing effects may be partly mediated by the phenolic acids such as ferula, tannins and umbelliprenin that present in the ferula gum.

In conclusion, these results revealed that Ferula asafoetida gum has potent anti-obesity activities. Also, this traditional remedy protects diabetic rats from liver steatosis. Additionally, this study proposes a mechanism for the anti-obesity and liver protective effects of ferula through the leptin levels. Presently, ferula gum can be a good candidate for the treatment of type 2 diabetes-induced obesity and hepatosteatosis.

Acknowledgments
This work was supported by vice chancellor of research, Shahid sadoughi University of medical sciences, Yazd, Iran through a grant to Hossain Azizian (grant no. 82401), Msc student of physiology. We thank technicians of physiology and biochemistry laboratories for their assistance.

References
Protective Effects of Ferula asafoetida in Type 2 Diabetic Rats

