Seroepidemiology and molecular detection of *Brucella* infection in Iranian horses: A provincial study

Badiei, Kh.*, Shariflyazdi, H., Pourjafar, M., Ghane, M., Hashemi, S.A.

Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

Key words:
horse, *Brucella* infection, PCR

Abstract:

BACKGROUND: Brucellosis is a febrile zoonotic infection and has worldwide distribution among humans as well as animals. Although the seroprevalence of brucellosis in various animals has been described in Iran, there is only one report on equine brucellosis in the region. **OBJECTIVES:** This study was carried out to determine the seroprevalence of brucellosis in racing clubs and private horse owners in the south of Iran and risk factors associated with the disease in horses. **METHODS:** 312 randomly selected equine serum samples were investigated for the presence of antibodies against *Brucella* genus, using slide agglutination by Rose Bengal plate test (RBPT), serum agglutination test (SAT) and 2-mercaptoethanol (2-ME) test, using whole cell antigen. PCR assay was also used for detection of clinically suspected cases. **RESULTS:** Most seropositive horses in this study were asymptomatic. The true seroprevalence of brucellosis was found to be 9.9, 8 and 7% by RBPT, SAT and 2-mercaptoethanol tests, respectively. All horses with history of clinical signs (3.2% of all samples) had RBPT, SAT and 2-mercaptoethanol positive results. It was also revealed that age, sex and a history of contact with ruminants had no effect on acquiring the infection in positive cases. In the PCR, one of the three horses with fistula withers produced amplicon of 450 bp fragment of *wbo* sequences specific to *Brucella* spp. field strain. **CONCLUSIONS:** This study showed the seroprevalence of brucellosis in horses of Fars province and it was indicated that the PCR assay may be helpful in detection of clinically suspected horses.

Introduction

Brucellosis is a febrile zoonotic infection and has worldwide distribution among humans as well as animals. It is of major economic importance (due to reproductive disorders and reduced production of affected animals) in developing countries that do not have a national brucellosis eradication program (Radostits et al., 2007). The disease occurs in countries of the Mediterranean Basin, the Middle East and the Persian Gulf (Apan et al., 2007; Pappas et al., 2005). Although Iran have put into effect programs to control and eradicate brucellosis, the disease still occurs in the country (Bokaie et al., 2009a). *Brucella* species are often categorized according to the principal farm animal they infect (Baek et al., 2011). Infection with *Brucella abortus* produces several consequences in horses. The most common disease is supraspinous bursitis (fistulous withers), which results from the apparent predilection of the organism for synovial structures (Reilly, 2009). This is marked by a painful swelling over the withers which may open and drain purulent material (Cohen et al., 1992). Supraatlantal bursitis (poll evil) may also be caused by *B. abortus* infection (Gul et al., 2009). Moreover, *B. abortus* infection is an in-
frequent cause of abortion in mares and infertility in the stallion (Carmichael, 1990). *Brucella suis*, transmitted from infected pigs, is an uncommon cause of bursitis or abortion in horses (Radostits et al., 2007). The seroprevalence of brucellosis in various animals such as cattle, sheep, goats, camels, poultry, dogs and human has been described in Iran (Bigdeli et al., 2011; Khadjeh et al., 1999; Sofian et al., 2008; Maadi et al., 2011; Behzadi and Mogheiseh, 2011). There is only one report on equine brucellosis in the northeast of Iran (Tahamtan et al., 2010). Because there was no published report on brucellosis in horses in the south of Iran, this study was undertaken to assess the prevalence of *Brucella* antibodies among equines in different districts of this region. The present study also describes the first application of PCR assay and its usefulness for detection of *Brucella* spp. in fistula withers discharges as a supplementary and complementary test in clinically suspected horses.

Materials and Methods

This study was conducted (during the period between April and September, 2009) on 312 randomly selected horses, to determine the seroprevalence of brucellosis and risk factors associated with the disease. Samples were taken from horse racing clubs and private horse owners of Fars Province, in the south of Iran. Blood samples were obtained by venipuncture and were transported in ice-boxes to the Shiraz University Large Animal Laboratory, as quickly as possible. The serum was then separated by centrifuging the blood samples at 2000g and kept at -20°C until tested. Serum samples were investigated for the presence of antibodies against *Brucella* genus using slide agglutination by Rose Bengal plate test (RBPT), serum agglutination test (SAT) and 2-mercaptoethanol (2-ME) test, using whole cell antigen (Razi Vaccine and Serum Research Institute, Iran). Sex, age, history of contact with ruminants, geographical location in the province and use of horses were considered as risk factors. In suspected cases, history and clinical signs relevant to brucellosis were recorded and complete physical examination including visual inspection, palpation of the withers, and probing of fistulous tracts was performed.

Genomic DNA extraction and PCR assay: The discharges (100 µL) from three horses with fistula withers were submitted to genomic DNA extraction. The DNA was extracted by digestion, ethanol precipitation and purification, using a commercially available kit (Qiagen DNAeasy), according to the manufacturer’s protocol and stored at -20°C before use.

The PCR assay contained the following primers: wbo1 5´-GCC AAC CAA CCC AAA TGC TCA CAA-3´ and wbo3 5´-TTAAGC GCTGATGCC ATT TCC TTC AC-3´ for RB51 detection (Vemulapalli et al., 1999).

These primers were designed previously based on the wboA gene disruption by an IS711 element in the *B. abortus* RB51 (Vemulapalli et al., 1999). Two fragments of 1300 bp and 450 bp were amplified form RB51 vaccine and *Brucella* spp. field strain, respectively. All oligonucleotide primers used in this study were synthesized by Cinnagen Co. in Iran.

PCR amplifications were performed in a 25-µL volume using thermal cycler (MG 5331, Eppendorf, Hamburg). The following PCR conditions were applied to each assay; 50 mM KCl, 10 mM Tris-HCl (pH = 9.0), 2 mM MgCl2, 200 µM dNTPs, 10 pM of each primer, 1.25 U Taq DNA polymerase (Fermentas) and 2 µL of template DNA.

After initial denaturation of template DNA at 94°C for seven min, the PCR profile was as follows: 30 cycles of 45 s of template denaturation at 95°C; 45 s of primer annealing at 64°C and 45 s of primer extension at 72°C; with a final extension at 72°C for 5 min. The presence of PCR products was determined by electrophoreses of 7 µL of reaction product in a 1.5% agarose gel in TBE (89 mM Tris-HCl, 89 mM boric acid, 2.0 mM EDTA, pH = 8.0) electrophoresis buffer and visualized by staining with ethidium bromide (0.5 µg/mL) under UV light. Images were captured on a computer. Vaccine (RB51) and reference field strains of *B. abortus* 544 were used as positive controls. Also DNA from healthy horse and sterile water were used as the negative controls.

The data were analyzed by the SPSS software (version 11.5) and confidence level of 95% was assumed. Chi-square analysis was applied to determine the significance of differences in seroprevalence of brucellosis among various groups. Differences were considered significant at p ≤ 0.05. The true seroprevalence was calculated according to Rogan and
Results

Most seropositive horses in this study were asymptomatic. The true seroprevalence of brucellosis was found to be 9.9, 8 and 7% by RBPT, SAT and 2-mercaptoethanol tests, respectively (Table 1). Although the seroprevalence of brucellosis was high in the mares as compared to stallions, it was not significant (Table 3). A difference was also observed in seroprevalence of brucellosis of different age groups which was not statistically significant (Table 4). The prevalence was non-significantly higher in the 2-5 and 5-10 year age groups as compared to other groups. Although the seroprevalence in relation to the use of the animals was not significant (p>0.05) in racing and non-racing horses, the prevalence was higher in non-racing as compared to racing horses (Table 5). All horses with history of clinical signs (3.2% of all samples) had RBPT, SAT and 2-mercaptoethanol positive results. It was also revealed that a history of contact with ruminants had no effect on acquiring the infection in positive cases (Table 6). The prevalence of the disease in different parts of Fars province and the result of SAT and 2-ME tests were presented in Tables 2 and 7 respectively.

In the PCR, one of the three horses with fistula withers (Figure 2) produced amplicon of 450 bp fragment of wbo sequences specific to *Brucella* spp. field strain (Figure 1). Specificity of the PCR used in this research was verified as the expected 450 bp band was not observed in the negative control tubes, including no-template DNA and DNA genomic from healthy horse.

Discussion

At the present time six species of *Brucella* are recognized: *B. abortus*, *B. melitensis*, *B. suis*, *B. ovis*, *B. canis* and *B. neotoma* (Bokaie et al., 2009a). Horses appear to be more resistant to *Brucella* infection than cattle, swine, and goats (Carmichael, 1990). Two *Brucella* species have been isolated in horses, namely *B. abortus* and *B. suis* biovars 1 (Cook and Kingston, 1988) and 3 (Cvetnic et al., 2005). In Iran, *B. abortus* and *B. melitensis* are more prevalent. (Zowghi et al., 2008). *B. suis*, *B. neotoma*, *B. ovis* were not isolated in Iran (Khadjeh et al., 1999; Rezaei-Sadaghiani et al., 1996; Samar et al., 1996). Recently, there have been several reports suggesting the occurrence of canine brucellosis in Iran (Akhtardanesh et
The true seroprevalence of brucellosis in our study was found to be 9.9, 8 and 7% by RBPT, SAT and 2-mercaptoethanol tests, respectively. The principal serological test used for brucellosis diagnosis is the RBPT, which is a screening test with high (>99%) sensitivity and low specificity in humans (Barrose et al., 2002) as well as in bovines (Hamidullah et al., 2009). Although no single test provides 100% sensitivity and specificity, SAT still remains the alternative test and is the test used for verification as it is a standard method for the diagnosis of brucellosis (Gul and Khan, 2007). The sensitivity and specificity of the SAT are 95.6 and 100%, respectively (Memish et al., 2002). 2-mercaptoethanol test has been used in cattle for the serological diagnosis of brucellosis. Based on 1051 sera from brucellosis free herds, the specificity of the 2-ME test was 99.8% (Stemshorn et al., 1985). Very few studies on the seroprevalence of Brucella species in horses have been reported. The reported seroprevalences vary from 8 to 16 per cent from 1976 to 1983 in the UK (Mac Millan, 1985) to 0.2 per cent in a tropical region of Mexico (Acosta-González et al., 2006) and 0 per cent in Eritrea (Omer et al., 2000). It has been reported that the prevalence rates of Brucella in horses, donkeys and mules in Egypt were 5.88%, 7.30% and 71.42%, respectively (Gul and Khan, 2007). It seems that the prevalence rate obtained in this study is somewhat higher than the prevalence of the infection in horses of Egypt (Gul and Khan, 2007).

Table 5. The number and percentage of horses and the rate of Brucella infection in racing and non-racing Horses of Fars province (Iran) as assessed by Rose Bengal plate test (RBPT).

<table>
<thead>
<tr>
<th>Use</th>
<th>Samples</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Racing</td>
<td>43 (13.8%)</td>
<td>7 (22.6%)</td>
</tr>
<tr>
<td>Non-Racing</td>
<td>269 (86.2%)</td>
<td>24 (77.4%)</td>
</tr>
<tr>
<td>Total</td>
<td>312 (100%)</td>
<td>31 (100%)</td>
</tr>
</tbody>
</table>

Table 6. The number and percentage of horses and the rate of Brucella infection in horses in contact with or no contact with ruminants in Fars province (Iran) as assessed by Rose Bengal plate test (RBPT).

<table>
<thead>
<tr>
<th>Contact with ruminant</th>
<th>Samples</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>161 (51.6%)</td>
<td>17 (54.8%)</td>
</tr>
<tr>
<td>No</td>
<td>151 (48.4%)</td>
<td>14 (45.2%)</td>
</tr>
<tr>
<td>Total</td>
<td>312 (100%)</td>
<td>31 (100%)</td>
</tr>
</tbody>
</table>

Table 7. The result of SAT and 2-ME tests on Brucella positive samples (number and percentage).

<table>
<thead>
<tr>
<th>Brucella antibody titer of the SAT test</th>
<th>SAT</th>
<th>2-ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20></td>
<td>1 (3.2%)</td>
<td>1 (3.2%)</td>
</tr>
<tr>
<td>2/20-3/40</td>
<td>5 (16.1%)</td>
<td>8 (25.8%)</td>
</tr>
<tr>
<td>3/80-4/40</td>
<td>11 (35.5%)</td>
<td>12 (38.7%)</td>
</tr>
<tr>
<td>>4/80</td>
<td>14 (45.2%)</td>
<td>10 (32.2%)</td>
</tr>
<tr>
<td>Total</td>
<td>31 (100%)</td>
<td>31 (100%)</td>
</tr>
</tbody>
</table>

Table 8. The number and percentage of horses and the rate of Brucella infection in horses in contact with or no contact with ruminants in Fars province (Iran) as assessed by Rose Bengal plate test (RBPT).

<table>
<thead>
<tr>
<th>Use</th>
<th>Samples</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Racing</td>
<td>43 (13.8%)</td>
<td>7 (22.6%)</td>
</tr>
<tr>
<td>Non-Racing</td>
<td>269 (86.2%)</td>
<td>24 (77.4%)</td>
</tr>
<tr>
<td>Total</td>
<td>312 (100%)</td>
<td>31 (100%)</td>
</tr>
</tbody>
</table>

Table 9. The result of SAT and 2-ME tests on Brucella positive samples (number and percentage).

<table>
<thead>
<tr>
<th>Brucella antibody titer of the SAT test</th>
<th>SAT</th>
<th>2-ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20></td>
<td>1 (3.2%)</td>
<td>1 (3.2%)</td>
</tr>
<tr>
<td>2/20-3/40</td>
<td>5 (16.1%)</td>
<td>8 (25.8%)</td>
</tr>
<tr>
<td>3/80-4/40</td>
<td>11 (35.5%)</td>
<td>12 (38.7%)</td>
</tr>
<tr>
<td>>4/80</td>
<td>14 (45.2%)</td>
<td>10 (32.2%)</td>
</tr>
<tr>
<td>Total</td>
<td>31 (100%)</td>
<td>31 (100%)</td>
</tr>
</tbody>
</table>
As a result, control of brucellosis in bovines and other animals in Fars Province is important for the health of horses. Most of the horses examined in this study were asymptomatic while only three showed clinical signs of the disease. The same fact was also reported by Dawson and Durrant (1975) and Mac Millan and Cockrem (1986). Although Brucella was not characterized in the other two horses sampled for PCR assay, its role as a potential aetiological agent for the occurrence of fistula withers could not be ruled out. Brucella may play a part in the pathogenesis of fistula withers in these seropositive cases, but at the time when chronic bursitis develops, no Brucella DNA may be detected by PCR assay. Keid et al., (2007) mentioned that a negative blood culture or PCR cannot always be relied upon to exclude a diagnosis of brucellosis, especially in chronically infected cases. Furthermore, it has been demonstrated that the stage of Brucella infection may influence the number and location of bacteria (O’Leary et al., 2006). Alternatively, these false negative PCR results may be explained by the presence of PCR inhibitors that are coextracted from the fistula discharges which inhibit or reduce the sensitivity of the PCR. The study indicated the seroprevalence of equine brucellosis in different districts of Fars Province and it was concluded that PCR assay may be helpful in detection of clinically suspected horses.

References

