Serological study of *Neospora caninum* in pregnant dairy cattle in Tehran, Iran

Salehi, N.¹; Haddadzadeh, H.R.²⁺; Shayan, P.²; Vodjgani, M.³ and Bolourchi, M.⁴

¹Department of Parasitology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran. ²Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. ³Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.

Key Words: Neospora caninum; pregnant cattle; antibody; ELISA; Tehran.

Correspondence
Haddadzadeh, H.R.,
Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, P.O. Box: 14155-6453 Tehran, Iran.
Tel.: +98 (912)1483695
Fax: +98 (21)66933222
E-mail: hhadad@ut.ac.ir

Received 4 July 2009,
Accepted 9 August 2009

Abstract
Seven hundred and sixty-eight blood samples of pregnant cattle from four Holstein dairy herds that are farmed in the vicinity of Tehran were used to evaluate the seroprevalence of infection by enzyme-linked immunosorbent assay (ELISA). Two hundred and ninety-eight of the 768 blood samples (38.8%) were positive for this infection. The prevalence of infection in the herds varied from 18.7% to 65.1%. The abortion rate in seropositive and seronegative animals was 20.67% and 10.11%, respectively. Thus, the risk of abortion was approximately double the rate in seropositive cows (p<0.0005). There was a high correlation between the infection rate and the age in one herd. In other three herds, no significant correlation was found between infection rate and age. This is the first extended study with regards to the rate of infection in pregnant cattle in the vicinity of Tehran.

Introduction
Neospora caninum is one of the most important protozoan parasites of cattle in terms of pathology, geographical distribution and the economic losses incurred. Neosporosis of cattle has been associated with abortion, neonatal mortality and between a 3% and 4% decrease in the volume of milk production (Hernández et al., 2001; Dubey and Schara, 2006). The diagnosis of this infection in live animals can be achieved by detection of anti-*N. caninum* antibodies using different serological tests, such as the indirect fluorescence antibody test (IFAT), the *Neospora* agglutination test (NAT), enzyme-linked immunosorbent assays (ELISA), and Western blotting. ELISA is an approved serological test (von Blumroder et al., 2004) that has been used in epidemiological studies to estimate the prevalence of *N. caninum* infections and to examine the relationship between exposure to *N. caninum* and abortion, milk yields and culling in cattle (Pare et al., 1997, Thurmond and Hietala, 1997, Hernandez et al., 2001 and Hernandez et al., 2002).

The seroprevalence of neosporosis in cattle varies depending on the country and region under study. There are some serological studies in dairy herds in some parts of Iran (Sadrebazzaz et al., 2004, 2006; Razmi et al., 2006; Nourollahi Fard et al., 2008). However, despite the fact that Tehran is the largest dairy-producing region in Iran, there is no published information on the epidemiology of *N. caninum* in the cattle of this province. There are only two reports of *N. caninum* infection in dogs in Tehran (Malmasi et al., 2007; Haddadzadeh et al., 2007). The aim of this study was to investigate the seroepidemiology of *N. caninum* infection in dairy herds in the vicinity of Tehran.

Materials and Methods

Field study area
In the spring and summer of 2007, blood samples were taken from cattle that were between three and five months of pregnancy from four different dairy herds, termed A, B, C, and D. These herds were located in an area of 80 km² within the southeastern, western and southern localities surrounding Tehran (Varamin, Eshtahard, Nazarabad and Eslamshahr, respectively). In each farm, the selected animal were categorized into four age groups (<3 yr, 3-4 yr, 4-5 yr and >5yr). All the sampled animals were followed to record the occurrence of spontaneous abortion until the end of gestation.

Serum samples
Blood samples were taken from the caudal vein of the animals and immediately transported to the laboratory. Serum was removed after centrifugation at 1200×g for 10 min. Each serum sample was kept in microtubes and stored at -20°C until they were tested for an antibody specific to *N. caninum*.

Serology
All sera were tested for IgG antibodies to *Neospora caninum* in the Parasitology Department Laboratory, Faculty of Veterinary Medicine, The University of Tehran.
using the Herdcheck-ELISA commercial kit (IDEXX Lab., Germany) according to the instructions of the manufacturer. Briefly, 100 µl of undiluted negative control, undiluted positive control and diluted serum sample were added to the well and the plate was incubated at room temperature for 30 min. The wells were washed four times with PBS Tween Buffer and 100 µl of HRP conjugate was added to each well and incubated at room temperature for 30 min. The plate was washed again and 100 µl of substrate solution was added and incubated at room temperature for 15 min. Then, 100 µl of stop solution were added to stop the reaction and the plate was analyzed in an ELISA microplate reader at a wavelength of 650 nm. The presence or absence of antibody against Neospora was determined by the sample to positive (S/P) ratio for each sample. The sample to positive (S/P) ratio was calculated with the use of the following formula:

\[
S/P = \frac{\text{Sample A (650)} - \text{negative control mean}}{\text{positive control mean} - \text{negative control mean}}
\]

Sera that had a corrected optical density (OD) >0.5 were considered to be positive for N. caninum infection.

Statistical analysis

Analysis of the data was performed using the Chi-squared analysis on contingency tables and linear regression (SPSS 11.5, Standard Version, Copyright SPSS Inc., 1982-2002). Statistical significance was reached at p≤0.05.

Results

IgG antibodies against N. caninum were detected in 298 of 768 blood samples (38.8%). In total, 40.7% of the cattle in farm A, 18.7% of farm B, 34.2% of farm C and 65.1% of farm D were seropositive (Table 1). The infection rates in different age groups of all farms are shown in Table 2. A significant correlation was demonstrated between infection rates in different age groups in herd A and when the entire population was considered (r²=0.97, p=0.03). No significant correlation was found within the other three herds. The abortion rate in seropositive animals was 20.67%, and 10.11% in seronegative cattle. Therefore, the risk of abortion was twice as high in the seropositive cows (p<0.0005). When the data of all four herds were collated, there was a high positive correlation between the infection rate and the occurrence of abortion (overall X²=30.06, p=0.0005, df=1).

Table 1: Prevalence of seropositive pregnant cattle in four different herds.

<table>
<thead>
<tr>
<th>Herd</th>
<th>Total No.</th>
<th>Seropositive No.</th>
<th>Seropositive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>199</td>
<td>81</td>
<td>40.7</td>
</tr>
<tr>
<td>B</td>
<td>188</td>
<td>37</td>
<td>18.7</td>
</tr>
<tr>
<td>C</td>
<td>199</td>
<td>68</td>
<td>34.2</td>
</tr>
<tr>
<td>D</td>
<td>172</td>
<td>112</td>
<td>65.1</td>
</tr>
<tr>
<td>Total</td>
<td>768</td>
<td>298</td>
<td>38.8</td>
</tr>
</tbody>
</table>

Table 2: Seroprevalence of pregnant cattle in different age groups of four different herds.

<table>
<thead>
<tr>
<th>Age</th>
<th><3 years</th>
<th>3 – 4 years</th>
<th>4 – 5 years</th>
<th>>5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>82</td>
<td>27</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>B</td>
<td>77</td>
<td>5</td>
<td>6.5</td>
<td>52</td>
</tr>
<tr>
<td>C</td>
<td>67</td>
<td>16</td>
<td>23.9</td>
<td>49</td>
</tr>
<tr>
<td>D</td>
<td>26</td>
<td>18</td>
<td>84.3</td>
<td>46</td>
</tr>
<tr>
<td>Total</td>
<td>254</td>
<td>66</td>
<td>26.9</td>
<td>178</td>
</tr>
</tbody>
</table>

Table 3: Abortion rate in pregnant cattle in four different herds.

<table>
<thead>
<tr>
<th>Herd</th>
<th>Seropositive animals (No.)</th>
<th>Seropositive aborted animals (No.)</th>
<th>Abortion in seropositive animals (%)</th>
<th>Seronegative animals (No.)</th>
<th>Seronegative aborted animals (No.)</th>
<th>Abortion in seronegative animals (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>81</td>
<td>24</td>
<td>29.62</td>
<td>118</td>
<td>19</td>
<td>16.1</td>
</tr>
<tr>
<td>B</td>
<td>37</td>
<td>9</td>
<td>24.32</td>
<td>161</td>
<td>16</td>
<td>9.93</td>
</tr>
<tr>
<td>C</td>
<td>68</td>
<td>5</td>
<td>7.35</td>
<td>131</td>
<td>8</td>
<td>6.1</td>
</tr>
<tr>
<td>D</td>
<td>112</td>
<td>24</td>
<td>21.42</td>
<td>60</td>
<td>5</td>
<td>8.33</td>
</tr>
<tr>
<td>Total</td>
<td>298</td>
<td>62</td>
<td>20.67</td>
<td>470</td>
<td>48</td>
<td>10.11</td>
</tr>
</tbody>
</table>
(Sadrebazzaz et al., 2004; Razmi et al., 2006), and in Kerman, in the southeastern region of Iran (Nourollahi Fard et al., 2008). In the 3 mentioned studies, using IFAT and ELISA, the rate of *N. caninum* infection were 15.7% to 19.6% (Sadrebazzaz et al., 2004), 46% (Razmi et al., 2006) and 12.6% (Nourollahi Fard et al., 2008), these result are not similar to ours.

The within-herd prevalence of *N. caninum* in the present study was between 18.7% and 65.1%. This range is more scattered than the range that was reported in studies of Australian and New Zealand dairy herds of 31-35% (Atkinson et al., 2000 and Reichel, 2000), 16-35% in Vietnam (Doung, 2008) and 15.7-19.6% in the northeastern region of Iran (Sadrebazzaz et al., 2004). It is conceivable that the wide range of infection rates in the four studied herds in Tehran was mainly due to differences in management conditions between herds. In farm D, with the highest prevalence of infection (65.1%), the management conditions were not well-controlled, and stray dogs could easily enter the herd due to lack of fencing.

Several studies have been performed on the seroepidemiology of anti-*N. caninum* antibodies in dogs in the vicinity of Tehran, which suggested the presence of *N. caninum* infection in these areas (Malmasi et al., 2006; Haddadzadeh et al., 2007). Other authors have shown that the presence of farm dogs is a risk factor for *N. caninum*-associated abortion in cattle (Pare et al., 1998; Lindsay et al., 1999).

In our study, a significant correlation was demonstrated between infection rates in different age groups in herd A, but no significant correlation was found within the other three herds. The relationship between age and seroprevalence in bovine neosporosis is speculative. Wouda et al. (1998) and Sadrebazzaz et al. (2004) reported no significant difference in seropositivity for different age groups of cattle. Jensen et al. (1999) suggested that seroprevalence increases with age. In contrast, Sanderson et al. (2000) reported that cows below 3 yr of age had higher CI-ELISA inhibition percentage values than cows above 6 yr of age. The association between seropositivity to *N. caninum* and abortion in dairy cattle that was found in this study correlated with findings in previous reports (Dubey et al., 1997; Paré et al., 1997; Maimar-Jaime et al., 1999; Anderson et al., 2000; López-Gatius et al., 2004). However, a significant correlation between infection and fertility disorders was not found. This finding is compatible with the results from a seroepidemiological study carried out in Spain (López-Gatius et al., 2005).

In this study, the abortion rate in total seropositive cattle was 20.67% and in seronegative cattle was 10.11%; the comparison between pregnant cows that were seropositive versus those that were seronegative for *N. caninum* demonstrated that the risk of abortion was double the normal risk in seropositive cattle that could be considered as part of the endemic pattern of abortion due to *N. caninum* (Dubey et al., 2007). In previous studies, the risk of abortion in seropositive cattle in comparison with the seronegative cattle was reported to be greater by 5.3-fold (Lopez et al., 2005), eight-fold (Vaclavek et al., 2003) and four-fold (Davison, 1999; Sager, 2001 and Haessler and Gottstein, 2002).

In conclusion, the results of the present study suggest that *N. caninum* is an important factor in the economic losses of the dairy industry in the region of Tehran, and appropriate management and control strategies need to be practiced by dairy farmers in this area.

Acknowledgements

The authors thank M. Akbari and M. Taheri for their helpful suggestions and the preparation of samples. The study was supported financially by the Faculty of Veterinary Medicine, The University of Tehran.

References