The Effect of an Educational Program Based on Health Belief Model on Preventing Osteoporosis in Women

Ali Khani Jeihooni, Alireza Hidarnia¹, Mohammad Hossein Kaveh², Ebrahim Hajizadeh³, Alireza Askari⁴

Department of Public Health, Fasa University of Medical Sciences, Fasa, Iran, ¹Department of Health Education and Health Promotion, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran, ²Department of Health Education and Health Promotion, Shiraz University of Medical Sciences, Shiraz, Iran, ³Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran, ⁴Department of Orthopedy, Shiraz University of Medical Sciences, Shiraz, Iran

Correspondence to:
Dr. Alireza Hidarnia, Department of Health Education and Health Promotion, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
E-mail: hidarnia@modares.ac.ir

How to cite this article: Jeihooni AK, Hidarnia A, Kaveh MH, Hajizadeh E, Askari A. The effect of an educational program based on health belief model on preventing osteoporosis in women. Int J Prev Med 2015;6:115.

ABSTRACT

Background: Osteoporosis is the most common metabolic bone disease. The study’s objective is to investigate the effect of an educational program based on Health Belief Model (HBM) on preventing osteoporosis in women.

Methods: In this quasi-experimental study, 120 patients (60 experimental and 60 control) who were registered under the health centers in Fasa City, Fars Province, Iran, were selected in 2014. A questionnaire consisting of demographic information, HBM constructs was used to measure nutrition and walking performance for the prevention of osteoporosis before, immediately after intervention, and 6 months later. Bone mineral density (BMD) was recorded at the lumbar spine and femur before and 6 months after intervention.

Results: The mean age of women participated in the study was 41.75 ± 5.4 years for the experimental group, and 41.77 ± 5.43 years for the control group. The mean body mass index was 22.44 ± 3.30 for the experimental group and 22.27 ± 3.05 for the control group. The average number of women deliveries for the experimental group was 2.57 ± 1.47 and 2.50 ± 1.19 for the control group. There is no significant difference between the two groups in education level (P = 0.771), marital status (P = 0.880), occupation (P = 0.673), breastfeeding (P = 0.769), smoking (P = 0.315), history of osteoporosis in the family (P = 0.378), history of special diseases (P = 0.769), and records of bone densitometry (P = 0.543). Immediately and 6 months after intervention, the experimental group showed a significant increase in the knowledge, perceived susceptibility, perceived severity, perceived benefits, perceived barriers, self-efficacy, internal cues to action, nutrition, and walking performance compared to the control group. Six months after intervention, the value of lumbar spine BMD T-score in the experimental group increased to 0.127, while in the control group it reduced to −0.043. The value of the hip BMD T-score in the intervention group increased to 0.125, but it decreased to −0.028 in the control group.

Conclusions: This study showed the effectiveness of knowledge, walking, and diet on bone mass by HBM. Hence, these models can act as a framework for designing and implementing educational interventions for the osteoporosis prevention.

Keywords: Health Belief Model, nutritional status, walking

Access this article online

Quick Response Code:
Website: www.ijpvmjournal.net/www.ijpm.ir
DOI: 10.4103/2008-7802.170429

Copyright: © 2015 Jeihooni AK. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
INTRODUCTION

Osteoporosis is a disease characterized by decreased bone density and or loss of bone microstructure, which can lead to an increased risk of fracture.[1]

Women are 8 times more at risk of osteoporosis than men[2] so that about 200 million women worldwide suffer from the disease.[1] Bone mass in women in all age groups is significantly less than that of men of the same age and race.[4] Peak bone mass is achieved by age 30 and then the bone mass gradually decreases with the increase in age.[5]

In a meta-analysis study in Iran, the overall prevalence of osteoporosis in lumbar spine was 0.17 and that of osteopenia was 0.35.[6] A study carried out in Fasa demonstrated that 34.1% of the women had osteoporosis.[7] The study by Mahboub et al., showed that 24.8% of the premenopausal females had osteopenia. There was a significant correlation between having osteoporosis and increasing age, fertility period, parity, menopausal duration, and the presence of comorbidities, especially hypertension, and diabetes mellitus.[8]

The findings of different studies suggest that exercise and adequate intake of calcium and Vitamin D have a significant effect on reducing the rate of bone density loss and improving bone mineral density (BMD).[9]

Osteoporosis is preventable, and an important point in preventing the disease is to modify thinking, lifestyle, and daily habits in such a way that they improve the quality of life and efficiency of individuals.[10] Thus, teaching preventive behaviors such as physical activity and correct nutrition as a simple and efficient method can help us prevent the disease and promote and maintain our health. One of the most important World Health Organization (WHO) goals is to increase the number of women trained in the area of osteoporosis.[11]

In line with such a purpose, identifying factors affecting behavior change can make changes easier. Therefore, in order to investigate factors affecting the adoption of osteoporosis preventive behaviors among women, it is essential to use models that identify factors affecting behavior. Based on Health Belief Model (HBM), people change their behavior when they understand that the disease is serious. Otherwise, they might not turn to healthy behaviors.[12] The structures of the HBM include perceived severity, perceived susceptibility, perceived benefits, perceived barriers, modifying variables, cues to action, and self-efficacy.[12]

Perceived susceptibility was used to evaluate women’s perception about the extent to which they are at risk of osteoporosis. Also, their perceived severity of osteoporosis complications was measured. The sum of these two factors is the women’s perceived threat of the disease. The perceived benefits and barriers that refer the individual’s analysis about the benefits of adopting preventive behaviors of osteoporosis such as diet and walking and about potential barriers to preventive behaviors of osteoporosis were investigated. These, alongside women’s perceived ability to carry out preventive behaviors, their cues to action (the incentives that affect women within and outside the family such as friends, doctors, healthcare providers, media, and educational resources), their fear of osteoporosis complications, and their sense of inner peace as a result of seeking preventive behaviors are factors affecting women’s decision to comply with preventive behaviors of osteoporosis.

Considering what said above, this study aims to measure HBM constructs regarding eating behaviors and physical activity on bone density in the prevention of osteoporosis among women.

METHODS

Study design and participants

The study was a quasi-experimental, prospective intervention research in 2014. The population of this study includes 120 women 30–50 years old covered by health centers of Fasa, Fars Province, Iran (60 intervention group and 60 control group). Among the six Urban Health Centers of Fasa, two centers were randomly selected that a center for the experimental group and another center for the control group. Simple random sampling was used at health center based on the numbers of health records of the mothers covered by the centers. The subjects were then invited to a meeting in a health center. They were explained about the study and the related purposes and their written informed consents were obtained.

Inclusion criteria

Women 30–50 years old covered by Health Centers of Fasa, lack of rheumatoid disease and mental illness, lack of fractures, and consent to participate in the study.

Exclusion criteria

Women with disability, diseases, and problems (such women with genetic early osteoporosis) that prevented them from participating in the study were excluded.

Figure 1 presents the flowchart of study participants.

After selecting the experimental and control groups, the pretest questionnaire was administered to two groups. These people were present from the beginning to the end of the study. Women’s education by researchers and...
A meeting was held in the Hall Health Center. Participants did not know whether or not they are affected by osteoporosis. Next, to measure bone density, the subjects were sent to Fasa bone densitometry center. After testing, the results were recorded. Bone density was measured by Hologic machine using dual energy X-ray absorptiometry method in L1 to L4 bones. The densitometry data including bone density in the lumbar spine and femoral neck was collected based on the WHO's T-score values.

The intervention for the experimental group included eight educational sessions of 55–60 min of speech, group discussion, questions and answers, as well as posters and educational pamphlets, film screenings, and PowerPoint displays. The details of the training sessions were as follows.

First session: Introduction to osteoporosis and its signs, complications, and diagnosis.

Second session: A 55-year-old woman who was diagnosed with osteoporosis and had a fracture was invited to show as a model and talk to the subjects about osteoporosis and its risk factors, symptoms, complications, and diagnosis with the help of a physician.

Third and fourth sessions: The role of nutrition in preventing osteoporosis, benefits, and barriers to diet, following dietary recommendations, self-efficacy in observing proper diet, and activities were recorded in specified forms.

Fifth and sixth sessions: The role of exercise, appropriate exercises, the role and importance of walking, benefits and barriers to walking, types of waking, self-efficacy in walking, and recording the duration of walking in specified forms were considered.

Seventh session: The session was held in the presence of at least one family member, and the role of family members in making, facilitating, and providing suitable food, walking program, and BMD testing was explained.

Eighth session: The previous sessions were reviewed, and the subjects were provided with educational pamphlets. Immediately after intervention, both groups completed the questionnaire. To preserve and enhance the activity of the experimental group, weekly educational text messages about osteoporosis were sent to them, and they attended monthly training sessions so that the researchers can follow-up their activities. Six months later, the questionnaire was completed by both groups (experimental and control), and the subjects underwent BMD tests, and the results were recorded.

Procedures and variables assessment

The researchers of this study after study texts and also with observing the principles of design tools data were designed and developed tool. In a cross-sectional study, 401 women between 30 and 50 years old who were covered by Health Centers of Fasa, to design and evaluate the reliability and validity of data collection tools were studied.

The questionnaire used in this study was developed based on the HBM. The questionnaire includes the following parts:

The first part includes demographic questions, including age, body mass index (BMI), education level, marital status, occupation, times of delivery, breastfeeding, smoking, history of osteoporosis, history of osteoporosis in the family, history of a special disease (any disease other than osteoporosis, such as thyroid disease, diabetes, cancer, and immunodeficiency diseases), and history of BMD.

The second section includes questions on structures of the HBM. Questions include: Twenty three questions on knowledge; 4 questions on perceived susceptibility (the women’s opinion about chances of getting osteoporosis); 6 questions on perceived severity (about complications due to osteoporosis); 8 questions on perceived benefits (about the benefits of preventive behaviors of osteoporosis, such as physical activity and calcium intake); 7 questions on perceived barriers (including barriers to physical activity and consumption of calcium-rich foods); 4 questions on self-efficacy (including the ability to do exercises and observe proper diet); 1 question on external cues to
action (resources including family and friends, doctors and health workers, mass media, books and magazines, internet and other patients with osteoporosis that encourage the subjects toward prevention behaviors of osteoporosis); and 3 questions on internal cues to action (including the fear of suffering from complications of osteoporosis and a sense of inner peace following preventive behaviors); all questions are based on the standard 5-point Likert scale ranging from strongly disagree to strongly agree (scores of 1–5). Scores of questions on external cues to action are calculated as cumulative frequency.

The third section consists of questions on nutritional performance and exercise, that is, walking. The performance questions consist of 10 questions about the type and amount of food consumed during the past week (score from 0 to 14). The exercise questions include 7 questions on the duration and type of walking (easy, moderate, and heavy) during the last week based on received guidelines (score from 0 to 21). The subjects' performance was assessed via self-report method.

To evaluate the validity of the questionnaire items, the item effect size higher than 0.15 and content validity ratio (CVR) above 0.79 were considered and based on the exploratory factor analysis, they were classified into nine factors. To determine face validity, a list of the items was checked by 30 women of 30–50 with demographic, economic, social, and other characteristics similar to those of the targeted population. To determine the content validity, 12 specialists and professionals (outside the team) in the field of health education and health promotion (n = 10), orthopedic (n = 1), and biostatistics (n = 1) were consulted. Then, based on the Lawshe’s table, items with higher CVR value (than 0.56 for 12 people) were considered acceptable and were retained for subsequent analysis. The calculated values in this study for the majority of items were higher than 0.70.

To determine reliability, a list of the items by 30 women of 30–50 with demographic, economic, social, and other characteristics similar to those of the targeted population in two consecutive 20-day periods was completed. The overall reliability of the instrument based on the Cronbach’s alpha was 0.87. Cronbach’s alpha was 0.86 for knowledge, 0.71 for perceived susceptibility, 0.82 for perceived severity, 0.79 for perceived benefits, 0.82 for perceived barriers, 0.79 for self-efficacy, and 0.77 for cues to action. Since the alpha values calculated for each of the structures studied in this research were higher than 0.7, the reliability level of the instrument was considered acceptable.

The conceptual framework of the proposed model is illustrated in Figure 2.

Ethical considerations performed by obtaining from the ethics committee of Tarbiat Modares University. The aims and importance of the study were explained to the subjects, and their written consent was obtained. The participants were assured that the information would remain confidential.

Statistical analysis

Data analysis was carried out through SPSS 19.0 software package (SPSS Inc., IBM, Chicago, IL, USA). using the Chi-square test, independent t-test, Mann–Whitney, and repeated measurement ANOVA. Demographic variables were compared between two groups with the Chi-square test. Comparison between the constructs of HBM, nutrition performance, and jogging performance during the time was done with repeated measurement ANOVA, followed up with Bonferroni post-hoc test separately in groups. Constructs of HBM, nutrition performance, and jogging performance were also compared between two groups with an independent t-test. T-score of lumbar spine and femur were compared between groups with Mann–Whitney nonparametric test according to departed of the normal distribution. Significance level was 0.05.

RESULTS

Based on the results, the mean age of women participated in the study was 41.75 ± 5.4 years for the experimental group and 41.77 ± 5.43 years for the control group. The mean BMI was 22.44 ± 3.30 for the experimental group and 22.27 ± 3.05 for the control group. The average number of women deliveries (number of pregnant women) for the experimental group was 2.57 ± 1.47 and 2.50 ± 1.19 for the control group. In terms of menopause and birth control-estrogen use, calcium of Vitamin D supplements not show a significant difference between the two groups. The above parameters did not show a significant difference between the two groups based on the independent t-test. Table 1 shows the
Although the mean score of 6.7 = 0.358), perceived
0.769 = 0.315), history of osteoporosis in the
8 = 0.293), self-efficacy (P = 0.262), nutrition (P = 0.481), and
walking performance (P = 0.999). However, immediately
after intervention and 6 months later, the experimental

group showed a significant increase compared to the
control group in all of the foregoing scales except for
perceived barriers (P < 0.001). On structural barriers,
the experimental group showed a significant decrease
compared to the control group [Tables 2 and 3] (P < 0.001).

Comparison of BMD T-score in the lumbar
spine (P = 0.973) and femur (P = 0.955) in women
before and 6 months after intervention showed that
before intervention, there was no significant difference
between the experimental group and the control group
in this regard. Six months after intervention, the value
of lumbar spine BMD T-score in the experimental
group increased to 0.127, while in the control group it reduced
to −0.043 (P = 0.413). The value of the hip BMD T-score
in the intervention group increased to 0.125, while it
decreased to −0.028 in the control group (P = 0.420)
[Table 4].

Table 5 shows the distribution of external cues to action
for osteoporosis, before, immediately after, and 6 months
after intervention. The number of cues used, especially
family and friends, immediately after intervention and
6 months after intervention increased as compared to
before intervention.

Table 1: Frequency distribution of the subjects in terms
of demographic information

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group</th>
<th>Experimental group</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupation</td>
<td>Number</td>
<td>Percentage</td>
<td>Number</td>
</tr>
<tr>
<td>Employed</td>
<td>10</td>
<td>16.7</td>
<td>12</td>
</tr>
<tr>
<td>Housewife</td>
<td>50</td>
<td>83.3</td>
<td>48</td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiterate</td>
<td>2</td>
<td>3.3</td>
<td>2</td>
</tr>
<tr>
<td>Primary</td>
<td>9</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Secondary</td>
<td>22</td>
<td>36.7</td>
<td>17</td>
</tr>
<tr>
<td>High school</td>
<td>17</td>
<td>28.3</td>
<td>18</td>
</tr>
<tr>
<td>College</td>
<td>10</td>
<td>16.7</td>
<td>9</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>6</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Married</td>
<td>48</td>
<td>80</td>
<td>46</td>
</tr>
<tr>
<td>Divorced</td>
<td>2</td>
<td>3.3</td>
<td>3</td>
</tr>
<tr>
<td>Widowed</td>
<td>4</td>
<td>6.7</td>
<td>3</td>
</tr>
<tr>
<td>Breastfeeding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>54</td>
<td>90</td>
<td>53</td>
</tr>
<tr>
<td>Yes</td>
<td>6</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>60</td>
<td>100</td>
<td>59</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>History of osteoporosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in the family</td>
<td>No</td>
<td>52</td>
<td>86.7</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>13.3</td>
<td>5</td>
</tr>
<tr>
<td>History of a special disease</td>
<td>No</td>
<td>53</td>
<td>88.3</td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>11.7</td>
<td>6</td>
</tr>
<tr>
<td>History of bone densitometry</td>
<td>No</td>
<td>53</td>
<td>88.3</td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>11.7</td>
<td>5</td>
</tr>
</tbody>
</table>

DISCUSSION

This study showed that a key prevention method for
osteoporosis is that of community-based intervention
strategies using behavior change models such as the HBM.
Based on the results, there were significant differences
between mean scores of knowledge before, immediately
after, and 6 months after intervention in the experimental
group. The knowledge scores in this group increased
significantly after intervention. This is consistent with
results of Ghaffari et al.,[13] Winzenberg et al.[14] and
Al Seraty and Ali Wafaa.[15] Although the mean score of
knowledge significantly increased in the control group as
well, there is a significant difference between the mean
scores of knowledge for the two groups. The increase in
knowledge and other constructs can be the participants’
access to information as well as their participation in the
training course held by the Fasa Health Center about
diseases and health issues for women and health volunteers.
The increase in knowledge score in the intervention group
is significant and deserves consideration.

There was a significant difference between perceived
susceptibility of the two groups 6 months after
intervention. This can be attributed to the effects of
intervention on the subjects perceived susceptibility. In
other words, after intervention, most women believed
they were at risk for osteoporosis. This is consistent with
results of Tussing and Chapman-Novakofski,[16] Doheny
et al.,[17] and Ghaffari et al.[13]
Table 2: Comparison between the mean scores of participants’ knowledge, HBM components

<table>
<thead>
<tr>
<th>Variable</th>
<th>Experimental group (n=60)</th>
<th>Control group (n=60)</th>
<th>RM ANOVA test results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pretest</td>
<td>Posttest</td>
<td>6 months later</td>
</tr>
<tr>
<td>Knowledge</td>
<td>7.65 (2.36)</td>
<td>10.82 (17.30)</td>
<td>18.33 (2.25)</td>
</tr>
<tr>
<td>Perceived susceptibility</td>
<td>22/7 (2.31)</td>
<td>10.50 (2.65)</td>
<td>15.82 (2.28)</td>
</tr>
<tr>
<td>Perceived severity</td>
<td>9.73 (2.34)</td>
<td>13.23 (3.54)</td>
<td>19.92 (4.31)</td>
</tr>
<tr>
<td>Perceived benefit</td>
<td>13.53 (3.76)</td>
<td>18.65 (4.72)</td>
<td>28.6 (5.01)</td>
</tr>
<tr>
<td>Perceived barrier</td>
<td>26.50 (4.01)</td>
<td>20.82 (4.02)</td>
<td>13.55 (3.95)</td>
</tr>
<tr>
<td>Self-efficacy</td>
<td>7.68 (1.90)</td>
<td>10.93 (2.37)</td>
<td>15.87 (2.60)</td>
</tr>
<tr>
<td>Internal cues to action</td>
<td>5.57 (1.91)</td>
<td>7.15 (1.91)</td>
<td>12.25 (1.46)</td>
</tr>
</tbody>
</table>

Table 3: Comparison of mean scores of nutrition and walking performance regarding osteoporosis prevention

<table>
<thead>
<tr>
<th>Variable</th>
<th>Experimental group (n=60)</th>
<th>Control group (n=60)</th>
<th>RM ANOVA test results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pretest</td>
<td>Posttest</td>
<td>6 months later</td>
</tr>
<tr>
<td>Nutrition performance</td>
<td>4.8 (1.87)</td>
<td>7.75 (1.87)</td>
<td>11.78 (1.49)</td>
</tr>
<tr>
<td>Jogging performance</td>
<td>6.93 (3.44)</td>
<td>11.83 (3.31)</td>
<td>18.72 (2.17)</td>
</tr>
</tbody>
</table>

Table 4: The mean T-score of lumbar spine and femur in women

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean±SD</th>
<th>Pa<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>Control</td>
</tr>
<tr>
<td>Spine</td>
<td>0.118±1.254</td>
<td>0.108±1.220</td>
</tr>
<tr>
<td>Preintervention</td>
<td>0.245±1.248</td>
<td>0.065±1.228</td>
</tr>
<tr>
<td>6 months later</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Hip</td>
<td>−0.240±1.108</td>
<td>−0.222±1.114</td>
</tr>
<tr>
<td>Preintervention</td>
<td>−0.115±1.087</td>
<td>−0.250±1.107</td>
</tr>
<tr>
<td>6 months later</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

P^c=Comparison between experimental and control (Mann-Whitney U-test).
SD=Standard deviation

After intervention, the perceived severity of the experimental group significantly increased compared to the control group. This is consistent with results of Khorsandi et al. and Hazavehei et al. However, the perceived severity in Tussing and Chapman-Novakofski and Hormoz et al. showed no significant increase after intervention.

The mean scores for perceived benefits showed a greater increase in the experimental group than in the control group immediately after and 6 months after intervention. Azar et al. showed that the construct of perceived benefits of physical activity in the intervention group significantly increased after training, but this was not true for the control group. This is consistent with the findings of the present study. In the study by Beik on the prevention of osteoporosis among women with low socioeconomic status, perceived benefits showed a significant increase after intervention. The increase in the perceived benefits can be the result of an emphasis on training on walking and diet, physical and psychological benefits of walking, and the role of nutrition in preventing osteoporosis.

The results of this study showed no significant difference between the two groups before intervention in terms of barriers. However, the difference was significant in immediately and 6 months after intervention for the experimental groups. In other words, the educational interventions significantly reduced barriers to proper diet and walking, thereby reducing the risk of osteoporosis. In the study of Anderson et al. and Khorsandi et al., perceived barriers of the study population regarding calcium intake and physical activity decreased after intervention.

The mean scores of self-efficacy in the present study showed that before intervention, both groups had low ability to control diet and walk. After intervention, the mean score of self-efficacy increased significantly in the experimental group. This is consistent with the results of Seddak et al., Tussing and Chapman-Novakofski, Kaveh et al., and Piaseu et al. but is inconsistent with those of Jessup et al. and Wu et al.

External cues of action are social factors included in the HBM and refer to perceived social pressures leading to doing or not doing a behavior. These external cues alongside internal ones led the women toward osteoporosis prevention behaviors. In this study, external cues for the subjects included family, friends, doctors,
and health workers. In immediately after and 6 months after intervention, external cues increased. They have an influential role as a source of information and support for eating and walking behaviors and for providing resource and guidance people need to assess bone density. The mean score for the internal cues to action significantly increased after intervention in the experimental group compared to the control. This is consistent with results of Khorsandi et al.\cite{18} and Azar et al.\cite{21}

In this study, before intervention, there was no significant difference between the mean score of women on osteoporosis prevention behaviors and both groups had low performance in maintaining proper diet and walking. Immediately after and 6 months after intervention, the mean performance score of the women in the intervention group significantly increased compared to controls. This shows the positive effects of the education on women’s performance. Hazavehei et al.\cite{19} also reported an increase in walking and calcium intake in the intervention group after intervention.

In a study by Al Seraty and Ali Wafaa on 100 female students using the HBM, the students’ performance on calcium intake and exercise after intervention showed a significant increase compared to before.\cite{15} This is consistent with Shirazi et al.’s study on the effects of physical activity education in the prevention of osteoporosis among women 40–65 years old based on Transtheoretical Model.\cite{3}

The study by Tarshizi et al. showed that the subjects’ physical activity levels before the training was not appropriate. However, by applying the HBM training in the experimental group, a significant difference was observed in this area.\cite{28} In the study by Beik, a significant difference was reported between the level of physical activity after intervention in the experimental and control groups. This is consistent with the present study, but no significant difference was observed between the mean daily calcium and Vitamin D intake before and after training. The intake levels were unsatisfactory.\cite{22} The results of this study are consistent with results of Khorsandi et al.,\cite{18} Wallace,\cite{29} and Azar et al.\cite{21} Davoud et al.’s study showed that there was a significant increase in calcium intake in the second phase, but in the third stage (3 months after intervention) calcium intake decreased.\cite{30} In a study by Plawecki and Chapman-Novakofski, an 8-week, bone-health community program addressed risks/lifestyle changes within the Health Belief Model and Theory of Reasoned Action frameworks in a randomized format (treatment group $n = 35$; control group $n = 34$). Median week 1 values for calcium (control, 963 mg; treatment, 1023 mg) and vitamin D (81 IU both groups) were below recommendations, increasing throughout the program for both control (1023 mg calcium, 128 IU vitamin D) and treatment (1005 mg calcium, 122 IU vitamin D) groups.\cite{31}

Table 5: Distribution of external cues to action regarding osteoporosis prevention

<table>
<thead>
<tr>
<th>Before intervention</th>
<th>Number</th>
<th>Percentage</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physicians and health personnel</td>
<td>30</td>
<td>27.5</td>
<td>28</td>
<td>27.2</td>
</tr>
<tr>
<td>Families and friends</td>
<td>20</td>
<td>18.3</td>
<td>16</td>
<td>15.5</td>
</tr>
<tr>
<td>Books</td>
<td>15</td>
<td>13.8</td>
<td>16</td>
<td>15.5</td>
</tr>
<tr>
<td>Journals and publications</td>
<td>12</td>
<td>11</td>
<td>15</td>
<td>14.6</td>
</tr>
<tr>
<td>Radio and television</td>
<td>25</td>
<td>22.9</td>
<td>20</td>
<td>19.4</td>
</tr>
<tr>
<td>Patients</td>
<td>3</td>
<td>2.8</td>
<td>4</td>
<td>3.7</td>
</tr>
<tr>
<td>Internet</td>
<td>3</td>
<td>2.8</td>
<td>4</td>
<td>3.7</td>
</tr>
<tr>
<td>Total</td>
<td>109</td>
<td>100</td>
<td>103</td>
<td>100</td>
</tr>
</tbody>
</table>
Six months after intervention, the value of lumbar spine BMD T-score in the experimental group increased to 0.127, while in the control group it reduced to −0.043. The value of the thigh BMD T-score in the intervention group increased to 0.125, while it decreased to −0.028 in the control group. In a study, Huang investigated the effectiveness of an osteoporosis prevention program among women in Taiwan based on the HBM and the three factors of knowledge, self-efficacy, and social support. The results showed that in the intervention group, perceived barriers and benefits improved significantly. Self-efficacy and knowledge variables also increased because of the training program. BMD is improved in the intervention group, while it is reduced in the control group.[32] Zhao et al. showed that exercise and calcium intake improved bone density.[33]

Jessup et al., in a research on the effects on exercise on bone density, balance, and self-efficacy in older women, showed that in the experimental group, compared to the control group, BMD in the femur and balance improved significantly. However, no significant change was observed in self-efficacy in both groups.[34]

The results show the effectiveness of the intervention program and the importance of educational interventions to improve osteoporosis prevention behaviors. Results of the education based on the HBM showed that people with higher mean scores on these constructs performed better in activities for the prevention of osteoporosis and had better bone density.

The limitations related to this research include its sampling method. Simple random sampling is selecting research participants on the basis of being accessible to the researcher. Another concern about such data centers on whether subjects can accurately recall past behaviors. Cognitive psychologists have warned that the human memory is fallible, and thus the reliability of self-reported data is tenuous on some items.[35] The exercise questions only related to walking, which may not have a big impact on bone density.

CONCLUSIONS

The results of this study, the importance of ongoing investigations, epidemiology and education about osteoporosis in women reveal that policy makers should consider health-related field as a priority. The results of this study showed that health can enhance the knowledge, perceived susceptibility, understanding the risks of disease, and interests and obstacles to the proper conduct of the preventive role. Most importantly, but it seems to change behavior, especially long-term behaviors and the behaviors that socioeconomic factors are interdependent, and failure. To sort these issues, should also be considered.

It can be concluded from the results of this study that providing educational programs in this regard for family members, physicians, and other health personnel and offering training programs in radio and television broadcasting is essential. Further studies should have more comprehensive interventions on the structures of calcium intake benefits and barriers and use other behavioral change theories. It is advised that researchers explain social and behavioral barriers in calcium intake in different cultural contexts.

Received: 18 Jan 15 Accepted: 16 Aug 15
Published: 24 Nov 15

REFERENCES

Source of Support: Nil, Conflict of Interest: None declared.