کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله
Introduction:

Multiple Sclerosis (MS) is a chronic, autoimmune and progressive neurological disease that causes a wide range of cognitive deficits in patients by destroying the Central Nervous System (CNS). This study aims to examine the effect of Transcranial Direct Current Stimulation (tDCS) on working memory of patients with MS.

Materials and Methods:

For this purpose, a quasi-experimental pre-t-test, post-test design with the control group was considered. In total, 32 patients with relapsing-remitting MS were selected using the convenience sampling method and randomly divided into experimental and control groups. The intervention consisted of 10 sessions of cranial electrical stimulation, during which the participants were divided into two groups receiving real and sham stimulation. N-Back test was employed to evaluate working memory.

Results:

The data were analyzed using the independent t-test. The results revealed that working memory was improved in the experimental group compared to the control group (P<0.05).

Conclusion:

It could be concluded that anodal tDCS over the right dorsolateral prefrontal cortex (R-DLPFC) appears to be a promising therapeutic tool for cognitive dysfunction among patients with MS.

Keywords:
Multiple Sclerosis (MS); Transcranial Direct Current Stimulation (tDCS); Working memory

1. Introduction

Multiple sclerosis (MS) is a chronic and progressive neurological disease that leads to physiological and dysfunctional structural changes in the white matter of the brain and spinal cord when the immune system attacks the CNS [1]. This disease has affected 2-2.5 million people worldwide. Approximately 30 out of every 100,000 individuals are diagnosed with MS, which is more prevalent among young people, especially women [2].

In the past, MS was considered a demyelinating disease of the CNS and white matter. However, cortical and deep gray matter demyelination has been recently recog-
Alipour A et al

mentioned cortex. Moreover, FMRI findings indicated accuracy was improved after magnetic stimulation of the simultaneously assessed by Functional Magnetic Reso

the brain activity and connectivity in that cortex were subjected to high-frequency magnetic stimulation, and Right Dorsolateral Prefrontal Cortex (R-DLPFC) was working memory performance in MS patients. The SWM could be improved [10-12], Hulst et al. examined diated cortical excitability through tDCS over DLPFC, Memory (SWM) and tDCS can provide an NMDA-me

methyl-D-aspartate (NMDA) receptor plays an underly

the cathode through the brain tissue [9]. Given that N-
applied current enters the brain from the anode and exits

taching anodes and cathodes to the scalp in tDCS, the

increase and decrease excitability, respectively. After at

studies have demonstrated tDCS could modulate cortical

excitability. tDCS is used as a treatment for psychi

safe brain stimulation technique that can modulate corti

Stimulation (tDCS). tDCS is a non-invasive, painless and

transcranial Direct Current Stimulation (tDCS). tDCS is a non-invasive, painless and safe brain stimulation technique that can modulate cortical excitability. tDCS is used as a treatment for psychiatric and neurological disorders [8]. Human and animal studies have demonstrated tDCS could modulate cortical excitability so that anodal and cathodal stimulation can increase and decrease excitability, respectively. After attaching anodes and cathodes to the scalp in tDCS, the applied current enters the brain from the anode and exits the cathode through the brain tissue [9]. Given that N-methyl-D-aspartate (NMDA) receptor plays an underlying Role in The Neurophysiological Function of Doros lateral Prefrontal Cortex (DLPFC) in Spatial Working Memory (SWM) and tDCS can provide an NMDA-mediated cortical excitability through tDCS over DLPCF, SWM could be improved [10-12], Hulst et al. examined working memory performance in MS patients. The Right Dorsolateral Prefrontal Cortex (R-DLPFC) was subjected to high-frequency magnetic stimulation, and the brain activity and connectivity in that cortex were simultaneously assessed by Functional Magnetic Resonance Imaging (FMRI). The results showed N-back task accuracy was improved after magnetic stimulation of the mentioned cortex. Moreover, FMRI findings indicated the increased activity associated with R-DLPFC task be-

fore stimulation disappeared in MS patients compared to the control group after applying magnetic stimulation. Task-related functional connectivity between the R-DLPFC, right caudate nucleus and bilateral cingulate cortex increased after stimulation [13]. Mattioli et al. conducted a study on patients with MS and found that anodal stimulation of the left DLPCF for 20 min at 2 mA along with performing cognitive training could improve patients’ performance in attention-demanding tasks and processing speed compared to the sham stimulation group [14].

Mori et al. examined pain among MS patients and found a significant reduction in pain among the group receiving anodal stimulation over the primary motor cortex (M1) compared to the sham group. Furthermore, no change was observed in patients’ depression and anxiety [15]. Chalah et al. investigated MS patients’ mood and attention and found anodal stimulation of DLPFC (F3) improved both components [16]. Therefore, the present study aims to evaluate the effect of tDCS of the right DLPFC on working memory among patients with MS.

2. Materials and Methods

This clinical trial was of practical type. The statistical population included 32 patients with relapsing-remitting MS aged 20-45 years old. The participants were selected by a neurologist using the convenience sampling method from those referring to the neurology clinic of Imam Khomeini Hospital, Tehran, based on the Expanded Disability Status Scale (EDSS) of 0-6.5. Inclusion criteria were having MS at least for 5 years, lack of comorbid neurological and psychological disorders and lack of participation in research projects in the past 2 months. Exclusion criteria were the presence of metal implants in the head and neck, having a cardiac pacemaker and a history of seizures, epilepsy and brain tumors. All the participants used drug therapy. The eligible individuals were randomly divided into experimental and control groups. The informed consent was obtained from all the participants. Moreover, they were asked to complete the demographic form and Expanded Disability Status Scale (EDSS). The ethics code was obtained from Ethics Committee of Iran University of Medical Sciences with reference no. IR.IUMS.REC1398.1146. All the participants performed the N-back test. Then, they were divided into two equal groups of active tDCS and sham tDCS (N=16 per group). In the sham tDCS group, the electrodes were placed on the scalp, but the electric current was cut off after a short time (30 sec) without informing the participants. Electrodes with the size of 5*5 were used for stimulation. The sponge pads of electrodes
were placed in normal saline (10 g of NaCl dissolved in 1000 cc of water) to facilitate current conduction and reduce damage caused by the passage of current. Electrical stimulation protocol was performed at the current intensity of 2 mA and ramp-up period of 20 sec for 20 min in 10 consecutive sessions (5 sessions per week). Finally, the anode and cathode were placed on the right DLPFC and left shoulder, respectively.

Expanded disability status scale (EDSS)

This scale measures the degree of disability of MS patients and examines the functional status of eight systems, including pyramidal, cerebellar, brainstem, sensory, bowel/bladder, visual and cerebral. Finally, the total score ranges from 0 (normal neurological status) to 10 (death due to MS). This scale is implemented by a neurologist and classified into three categories based on Jones’ criteria: mild (0-3), moderate (3.5-6.5) and severe (7 and higher) [17].

N-back test

N-back is a computer-based test that was first introduced by Kirchner to assess working memory [18]. In this study, the SWM paradigm was used. SWM is a fundamental executive function, characterized by the short-term maintenance and manipulation of spatial information for organizing more goal-directed behaviors [19]. Visuospatial working memory involves a network of different brain regions. One fMRI study on SWM network demonstrated DLPFC performed higher-level executive processing such as updating information and suppressing distraction [20].

This test includes two visual and auditory aspects. The scores of memory and reaction time in each sensory aspect are calculated separately [21]. In this test, the participant should respond to a set of stimuli based on specific instructions; for example, the participant should respond to the presented stimulus if it is similar to one or more previous stimuli. In this study, N was determined to be 2 (2-back) and memorizing the spatial position of the stimulus was considered. The stimuli were presented visuo-spatially. Validity coefficients ranged from 0.54 to 0.84, indicating high validity of this test. The validity of this test is highly acceptable as a measure of working memory [22].

Statistical analysis

The normal distribution of the data and independence of errors were determined by Durbin-Watson statistic. The data were analyzed using the independent t-test. The significance level was assumed at P<0.05. The data were analyzed by SPSS v. 22 software.

3. Results

In this study, 32 patients with relapsing-remitting MS participated, 22 of whom were female and 10 were male. As presented in Table 1, there was no significant difference in age and gender between the experimental and control groups (P>0.05), indicating the two groups were matched in terms of these variables. However, a statistically significant difference was observed in EDSS between the two groups (P<0.05).

The independence of errors was calculated to be 2.01 using Durbin-Watson statistic. As a general rule, observations are independent if Durbin-Watson statistic is between 1.5 and 2.5. Examining the assumption of error term normality by plotting the residual histogram indicated the normal distribution of the data.

Table 2 presents the effects of anodal tDCS of the R-DLPFC on working memory performance in the N-back test. According to the significance level (P≤0.05) and acceptable level of t-statistic, it can be concluded that there was a significant difference between pre-test and post-test in the experimental group in terms of working memory.
Table 1. Comparing demographic characteristics in experimental and control groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Experimental Group</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean±SD</td>
<td>Minimum</td>
</tr>
<tr>
<td>Age</td>
<td>35.750±3.827</td>
<td>29</td>
</tr>
<tr>
<td>EDSS</td>
<td>0.7500±0.683</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group</th>
<th>Frequency</th>
<th>Percentage</th>
<th>Frequency</th>
<th>Percentage</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Female</td>
<td>11(68.8)</td>
<td></td>
<td>11(68.8)</td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>5(31.2)</td>
<td></td>
<td>5(31.2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Results of correlated t-test comparing pre-test and post-test in the experimental group

<table>
<thead>
<tr>
<th>Experimental Group</th>
<th>Mean±SD</th>
<th>Standard Error of the Mean (SEM)</th>
<th>t</th>
<th>Degree of Freedom (df)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working memory</td>
<td>1.562±5.352</td>
<td>1.338</td>
<td>11.677</td>
<td>15</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 3. Results of independent t-test comparing working memory in experimental and control groups

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>F</th>
<th>t</th>
<th>Degree of Freedom (df)</th>
<th>p-value</th>
<th>Mean Difference</th>
<th>Difference of the Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working memory in the pre-test</td>
<td>1.168</td>
<td>1.260</td>
<td>30</td>
<td>0.217</td>
<td>4.000</td>
<td>3.174</td>
</tr>
<tr>
<td>Working memory in the post-test</td>
<td>0.016</td>
<td>5.547</td>
<td>30</td>
<td>0.05</td>
<td>16.062</td>
<td>3.174</td>
</tr>
</tbody>
</table>

Diagram 1. Histogram of examining the assumption of error term normality
Table 3 compares the performance of the experimental and control (sham) groups. The results revealed no significant difference between the performance of the two groups in the pre-test ($P>0.05$). However, a statistically significant difference was observed between the two groups in the post-test ($P<0.05$). Therefore, the anodal tDCS of the right DLPFC improved working memory function among MS patients.

4. Discussion

This study aimed to investigate the effect of tDCS on working memory of patients with relapsing-remitting MS. The results indicated that anodal stimulation of the R-DLPFC improved working memory among MS patients. Consistent with our results, Hulst et al. examined working memory of MS patients. In this study, R-DLPFC was subjected to high-frequency magnetic stimulation, and the brain activity and connectivity in that area were simultaneously assessed by FMRI. The results showed N-back task accuracy was improved after magnetic stimulation of the mentioned cortex. Moreover, FMRI findings revealed that the increased activity associated with R-DLPFC task before stimulation disappeared in MS patients compared to the control group after applying magnetic stimulation. Task-related functional connectivity between the R-DLPFC, right caudate nucleus and bilateral cingulate cortex increased after stimulation [13]. In line with our study, Giglia et al. indicated the effectiveness of anodal stimulation of the R-DLPFC on spatial working memory of the experimental group compared to the control group [23]. Consistent with our work, Hamidi et al. reported the effectiveness of magnetic stimulation of the R-DLPFC on spatial working memory compared to the L-DLPFC. The results showed the delayed-recognition task accuracy increased [24]. Also, the study of Grigorescu et al. was in line with our results. They investigated the effect of electrical stimulation of the bilateral prefrontal cortex on cognitive functions including information processing speed, working memory and attention among MS patients. The anode and cathode were placed on the L-DLPFC (F3) and R-DLPFC (F4), respectively, and excited at 2 mA for 20 min. Interestingly, the task accuracy of working memory was improved in the sham group compared to the experimental group. It was concluded that cathodal stimulation of the R-DLPFC may have led to working memory impairment [25]. Another study revealed the right DLPFC played a key role in dealing with cross-domain motor interference for SWM. Moreover, the anodal tDCS over the right DLPFC enhanced SWM performance, particularly when task difficulty required more complex cognitive manipulations [26].

The mechanism of action of tDCS, despite its widespread use, is still not fully understood. However, researchers have suggested mechanisms such as changes in ion channel function, activation of NMDA receptors and reduction of free GABA in cortical areas affected by anodal or cathodal stimulation, which in turn lead to the enhanced glutamatergic synaptic processes [27]. The Increased Long-Term Potentiation (LTP) via Brain-Derived Neurotrophic Factor (BDNF) is another mechanism of tDCS [28]. BDNF signaling by TrKB receptor directly interacts with synaptic plasticity mechanisms based on NMDA glutamate receptors [29]. A human study focusing on the combined application of pharmacology and fMRI revealed NMDA receptor blockade reduced DLPFC activation and network connectivity, and, consequently, impaired SWM performance [30]. Accordingly, Glutamate receptors are critical for synaptic plasticity, and BDNF facilitates glutamatergic synaptic transmission [20]. Therefore, BDNF is directly involved in the repair of the central nervous system and cognitive functions [31].

5. Conclusion

As pointed out in Introduction, cognitive deficits associated with MS are due to white and gray matter demyelination and degradation. It seems that the central nervous system can be repaired and, consequently, the damaged cognitive functions can be improved by tDCS through strengthening synaptic connections and brain networks.

Ethical Considerations

Compliance with ethical guidelines

The ethics code was obtained from Ethics Committee of Iran University of Medical Sciences with reference no. IR.IUMS.REC1398.1146.

Funding

The paper was extracted from the PhD. thesis or extracted from a research project of the first author, Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
Author’s contributions

Conceptualization and Supervision: Mohammad Nasr-ehi, Mehdi Tehranidoost, Mohammad Hossein Harirchian and Mohammad Reza Zarrindast; Methodology: Hamid Alipour; Investigation, Writing – original draft, and Writing – review & editing: All authors;

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

We would like to sincerely thank all those who cooperated with us in conducting this research. Special thanks to Dr. Solmaz Khalifeh for her generous help. We would also like to thank the Cognitive Sciences and Technologies Council for funding this research.

References

کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله