Two Beautiful Geometrical Theorems by Abū Sahl Kūhī in a 17th Century Dutch Translation

Jan P. Hogendijk
University of Utrecht

Abstract
(Received: 21/09/2008 - accepted: 15/11/2008)
This article is devoted to two theorems on tangent circles, which were discovered by the Iranian geometer Abū Sahl Kūhī (4th century A.H.). The two theorems were inspired by the Book of Lemmas (ma'khūdhāt) attributed to Archimedes. Kūhī's original treatise is lost, but the two theorems are found in Naṣīr al-Dīn Ṭūsī's edition of the Lemmas of Archimedes. They then appeared in Latin translations in 1659 in London, and again in 1661 in Florence, and in 1695 in a revised Dutch version in Amsterdam. The present article compares the original Arabic version of Kūhī's theorems (in the presentation of Ţūsī) with the revised Dutch version.

Keywords: Kūhī, Ţūsī, Archimedes, geometry, circles, 17th century Dutch mathematics

Introduction
Waijan ibn Rustam Abū Sahl Kūhī was an Iranian geometer and astronomer, who flourished in the second half of the 4th century A.H./10th century A.D. (for biographical data and a list of works of him, see sezgin, V, 314-321, VI, 218-219; Rosenfeld and Ihsanoğlu, 102-105; for a general analysis of his works, see Berggren). Kūhī had an outstanding reputation among his contemporaries: he was even called the “Master of his Age in the Art of Geometry” (the Arabic term is shaykh’asrīhi fi ṣīnā’at al-handasa; see Berggren, 178). No works by Kūhī were known in medieval and Renaissance Europe. In the seventeenth century A.D., however, fragments of his work were translated into Latin. This paper is devoted to two beautiful
geometrical theorems in Kūhī’s Ornamentation of the Lemmas of Archimedes. The theorems were twice translated into Latin, in 1659 and 1661, and they also appeared in an edited form in the Latin edition of the works of Archimedes by Isaac Barrow (1630-1677) (see Dictionary of Scientific Biography, I, 473-476), which appeared in 1675 in London (see Barrow in references). In 1695 they were published in Amsterdam in an appendix to a Dutch version of the Elements of Euclid.¹

In the seventeenth century, there was a certain interest in Islamic science in Holland. Between 1629 and 1667, Jacobus Golius held a joint professorship in mathematics and Arabic at the University of Leiden, and he translated a few scientific texts from Arabic into Latin. But no 17th-century Dutch paraphrase of an Islamic mathematical text was hitherto known to exist, and the document in this paper is probably unique. Thus it deserves to be published and compared to the original.

Section 2 of this paper contains an English translation of the medieval Arabic text of Kūhī’s two geometrical theorems and some additional material. In Section 3 of this paper, the 17th-century Dutch paraphrase of Kūhī’s theorems is presented, together with an English translation. In the brief mathematical analysis in Section 4, I will compare the Dutch paraphrase in Section 3 with the original in Section 2. Barrow’s Latin edition will turn out to be an intermediary chain in the transmission from Iran to the Netherlands.

The rest of this introduction is about Kūhī’s two geometrical theorems, their complicated transmission, and the way in which they were judged by the translators and by the mathematicians Barrow and Voogt.

Kūhī’s theorems were inspired by proposition 5 of the Lemmas of Archimedes, a text on elementary Euclidean geometry consisting of 15 propositions on circles. It is unlikely that the Lemmas were written by Archimedes himself; the work is probably a Greek compilation

made in late antiquity. From now on, we will call its author “Archimedes.”

The two theorems of Kūhī’s concern variations of a figure which “Archimedes” calls arbelos, or shoemaker’s knife; the Latin term is sicila, “sickle”. This shoemaker’s knife consists of three semicircles with the same diameter, which are mutually tangent at their endpoints, as shown in Figure 1. In proposition 5 of the Lemmas, “Archimedes” draws a perpendicular at the point of tangency of the two small semicircles, and he describes two complete circles which are tangent to the perpendicular and to two boundary semicircles of the shoemaker’s knife. “Archimedes” shows that the two complete circles are of equal size.

Kūhī generalized the shoemaker’s knife to a figure with three semicircles with the same diameter, such that the largest semicircle is tangent to the two smaller circles, but the two smaller semicircles are no longer mutually tangent.

If the two smaller semicircles intersect, as in Figure 2, Kūhī drops the perpendicular through the point of intersection to the diameter and he defines the two additional complete circles as before. He proves that the complete circles are also of equal size.
Finally, if the two small semicircles do not meet, as in Figure 3, Kūhī considers on the common diameter the point from which the tangents to the two small circles are equal. He draws the perpendicular through that point, constructs the complete circles as before, and proves that the complete circles are again of equal size.

The mathematically interested reader is invited to give the proofs of the theorems of “Archimedes” and Kūhī, before reading the rest of this paper. “Archimedes” and Kūhī do not explain, at least not explicitly, the problem how to draw the complete circles by ruler and compass in such a way that they are tangent to two semicircles and the perpendicular. This is another interesting problem for the reader.

In his proof, “Archimedes” determines the diameter of one of the complete circles. In modern terms, the diameter turns out to be \(\frac{ab}{a + b} \), where \(a \) and \(b \) are the diameters of the smaller semicircles and \(a + b \) the diameter of the larger semicircle. Since this expression is symmetric in \(a \) and \(b \), the diameters of the circles on both sides of the perpendicular must be equal. Kūhī’s proof is more complicated but based on the same symmetry principle. If the smaller circles do not intersect, the radius of the complete circle in terms of the diameters \(a \) and \(b \) of the smaller semicircle and the closest distance between them is \(\frac{(a + c)(b + c)(a + b + 2c)}{(a + b + 2c)} \). Since the expression is symmetric in \(a \) and \(b \), again the two small circles on both sides of the perpendicular are equal. We should note, however, that Kūhī does not determine the radius in this way.

Between the 17th and 19th centuries, similar problems about circles were very popular in Japan as a form of art, called sangaku. The figures were displayed in Japanese temples and visitors were invited to discover the ‘nice’ property in the figure and then to prove the
property.1,2 Figures 1-3 have not been found in Japan, but they can be considered sangaku figures if all explanations are omitted. The ‘nice’ property to be discovered and proved is the equality of the complete circles. Each of Kūhī’s figures 2 and 3 could be used as the logo of an institution or organization dedicated to the Islamic-Persian heritage in mathematics.

We now turn to the transmission of the Lemmas of “Archimedes” and of Kūhī’s theorems. The Greek text of the Lemmas is lost. The Lemmas were translated into Arabic by Thābit ibn Qurra (836-901 AD) (on the mathematical works and translations by Thābit ibn Qurra see, e.g., Sezgin, V, 264-272). The Arabic title of the work is ma‘khūdāt, literally: Assumptions, but scholars believe that the Arabic title is a translation of the Greek word ἐ̇λµmata (compare Heiberg, II, 511 note), which is the reason why the work is called Lemmas in the modern literature. Thābit ibn Qurra’s translation inspired Kūhī to write his Ornamentation of the Lemmas of Archimedes. The complete version of this Ornamentation is also lost; only the two geometrical theorems were preserved in the commentary to the Lemmas by Abu’l-Ḥasan ‘Alī ibn Aḥmad Nasawī (ca. 400/1010) (see Sezgin V, 345-348). By the time of Nasawī, the Lemmas of “Archimedes” had been included in the Middle Books (mutawassīt) that is the collection of texts which had to be read by students of mathematics and astronomy between the Elements of Euclid and the Almagest of Ptolemy. When Naṣīr al-Dīn Ṭūsī (d. 672/1274) produced a new edition of the Middle Books, he included the Lemmas of “Archimedes” with the commentary by Nasawī and Kūhī’s two theorems.

Ṭūsī’s edition of the Middle Books is extant today in numerous Arabic manuscripts (see Sezgin 5/133), and it is the source of all (Arabic and Latin) versions of the Lemmas which have been published hitherto. In the 17th century, some manuscripts of Ṭūsī’s edition were available to European orientalists and mathematicians who were

\begin{itemize}
\item[2.] As far as I know, the question whether the Japanese sangaku figures were influenced by Greek and possibly Islamic mathematics has not been investigated.
\end{itemize}
interested in recovering lost works by Archimedes from Arabic texts. The first Latin translation of the *Lemmas* was made by John Greaves (1602-1652) (see Toomer 126-179) and published posthumously (London, 1659); two years later, in 1661, a much superior translation appeared in Florence. This translation was a joint product of the Christian philosopher Ibrahim al-Ḥakīlaṭī (1605-1664), from Ḥākil in Northern Lebanon, whose name was Latinized as Abraham Ecchellensis, and the mathematician Giovanni Alfonso Borelli (1608-1679), who did not know Arabic (on Borelli see Dictionary of Scientific Biography, II, 306-314). Borelli added his own introduction as well as commentaries to some of the propositions. The two Latin translations include the two theorems by Kūhī with references to him. The translations are based on Ṭūṣī’s edition of the *Middle Books*, but Ṭūṣī’s name is not mentioned in his new edition of the *Lemmas*, so his name does not occur in the Latin versions either.

In 1675, Isaac Barrow published a new version of the *Lemmas* in his edition of the works of Archimedes and Apollonius. Barrow had access to the two Latin translations of 1659 and 1661, and he added some commentaries of his own. He often changed the labels of points in geometrical figures, and used some mathematical symbols in his translation (such as +, ×). He applied the same treatment to Kūhī’s theorems. In 1695, The Dutch geometer C.J. Voogt (on C.J. Voogt almost nothing is known: see Van der Aa, A.I, V 109) published a complete Dutch edition of the *Elements* of Euclid. To Euclid’s Book 6, Voogt added an appendix which included, among other things, a reworking of the entire contents of the *Lemmas* of “Archimedes”. Thus, proposition 24 of this appendix is a paraphrase of proposition 5 of “Archimedes” together with the two theorems by Kūhī. We will see

1. The references are: *Lemmata Archimedis apud graecos et latinos jam pridem desiderata, e vetuste codice M.S. arabico a Johanno Gravio traducta et nunc primum cum arabum scholis publicata, revisa et pluribus mendis expurgata a Samuele Foster*, which was published in S. Foster, *Miscellanea sive lucubrationes mathematicae*, Londini 1659. I have consulted the copy in the University Library in Leiden. The 1661 translation by Ecchellensis and Borelli is found in Apollonii Pergaei Conicorum Lib. V. VI. VII. paraphraste Abalphato Asphahanesi nunc primum editi, Additus in calce Archimedes Assumptorum Liber ex codicibus arabicis mss. ... Abrahamus Ecchellensis Maronita ... latinos reddidit Io.[hannes] Alfonssus Borellus in Geometricis versione contulit, Florentiae 1661.
in Section 4 that Voogt based his paraphrase on Barrow’s edition, but deleted Barrow’s mathematical symbolism. Voogt added some new elements, which were not always improvements.

In the nineteenth century, Kūḥī’s two theorems appeared in a footnote in the 1824 German translation of the works of Archimedes by Nizze, and in a brief article which appeared in 1869 in London. Needless to say, Kūḥī’s two theorems were not included in the standard editions and translations by Heiberg (II, 516, note 3), Heath (307) and Ver Eecke (II, 529, footnote 2), whose main interest was the “restoration” of the mathematical work of the Greeks.

We now turn to the way in which the theorems and their author were judged. Ecchellensis and Borelli seem to have been prejudiced with respect to Islamic mathematicians. They write that the theorems by Kūḥī are “indeed easy.”¹ They do not pass judgement of Kūḥī, at least not explicitly,² but elsewhere they point out (to my mind incorrectly) that Nasawī was “not quite experienced in geometry.”³ Isaac Barrow, on the other hand, was more positive with respect to the Islamic scientific tradition, and at one point he intended to study Arabic. He apparently learned the Arabic alphabet, for his edition of the Lemmas contains a few names and technical terms in Arabic. Barrow introduced Kūḥī’s theorems by the words: “Then, the commentator Nasvaeus explained the other cases of this fifth Theorem according to Abi Sahl Cuhensis, the famous Mathematician, somehow as follows.”⁴ In his translation, Voogt uses “de doorlugtige wiskonstenaar Abi Sahl Cuhensis” (the illustrious mathematician Abū Sahl Kūḥī), and we have no reason to doubt that this was Voogt’s own judgement as well. Elsewhere in his work, Voogt (Introduction, p. 3) also praises Islamic improvements in arithmetic: “Pythagoras ..., and his successors, as well as the Egyptians, and after them the Greeks and

¹ Ecchellensis and Borelli, p. 383: Reliquae duae propositiones superadditae ad Arabibus faciles quidem sunt.
² It can be shown that their implicit judgement of Kūḥī was negative, see my paper “Kuhi Latinus”, to appear.
³ Ecchellensis and Borelli, p. 396: … Almochtasso non admodum in Geometris versati.
⁴ Deinde Adnotator Nasvaeus caeteros casus hujusce quinti Theorematis ad mentem Abi Sahl Cuhensis percelebris athematici, hoc fere modo exponit (Barrow, 269).
the Arabs have notably increased arithmetic."

2. The Ornamentation of the Lemmas of Abū Sahl Kūhī; Arabic text and English translation.

This section contains an English translation of “Proposition 5” of the *Lemmas* of “Archimedes”, the two theorems by Kūhī, and two intermediary theorems by Nasawī. I have inserted numbers in square brackets [1], [2], … to facilitate comparison with Voogt’s paraphrase in Section 3. These numbers need not always be consecutive. The translation is based on the uncritical Hyderabad edition¹ of the *Middle Books*. The text has been compared to the recent facsimile of the *Middle Books* published by Dr. J. Aghayani Chavoshi (Tehran 2005, 192, 194-197). A table of contents of Dr. Chavoshi’s facsimile is presented at the end of this paper. Arabic letters indicating points in the geometrical figures have been transcribed in the translation as follows: alif = A, bā=B, jīm=G, dāl=D, hā = E, zā = Z, ḥā = H, tā = T, kāf = K, lām=L, mīm = M, nūn = N, ʿayn = O, sin = S.

I include an English translation of the preface to the *Lemmas*, in which Kūhī is mentioned. This preface is of additional interest because there are (strange) references to other works by “Archimedes”. None of these works, if they ever existed, have come down to us, and to my mind, these references make Archimedes’s authorship of the *Lemmas* very unlikely.

The Latin translations by Greaves and Ecchellensis correspond closely to the Arabic original. The reader may find the Latin translations by Ecchellensis of proposition 5 and of the introduction to the *Lemmas* in vol. 2 of Heiberg’s edition (514-516, 511 footnote).

Translation of the Preface to the Lemmas

The Competent Scholar (= Nasawī) said: This treatise is attributed to Archimedes. It contains beautiful proposition, few in number but with many benefits, on the principles of Geometry; (they are) extremely good and subtle. The contemporaries have added them to the collection of middle books which have to be read between the book of Euclid (the Elements) and the Almagest. But in some of its propositions are places which require other propositions, with which the proof of that proposition is completed. In some of them, Archimedes referred to propositions which he had presented in other works by him. Thus he said: “as we have proved in the Right-Angled Figures, and as we have proved in our Commentary on the Comprehensive Treatise on Triangles, and as has been proved in our Treatise on Quadrilateral Figures.” And in the fifth proposition he (Archimedes) presented a proof in a way in which is (only) a special aspect. Then after that, Abū Sahl Qūḥī wrote a treatise which he calls Ornamentation of the Book of Archimedes on Lemmas. In it, he presented a proof of this proposition in a more general and more beautiful way, together with the addition and composinton of ratios involved in it (the proof).

When I found the situation like this, I (= Nasawī) made a commentary to the obscure places in this work, by way of notes appended to the text. I have explained the things to which he referred by means of propositions which I invented. Of the propositions of Qūḥī, I have presented two propositions which are necessary in the fifth proposition (by “Archimedes”), and I have omitted the rest because I did not want to be too lengthy and because I did not need it. With God is success.

1. The name of the editor, Naṣīr al-Dīn Ẓāhirī, is not mentioned here.
2. Qūḥī is an alternative spelling of Kūhī, often found in Arabic geometrical texts.
Translation of proposition 5 by “Archimedes,” the two intermediary theorems by Nasawī and the two theorems by Kūhī

(Figure 4) [1] If there is a semicircle AB and a point G is marked arbitrarily on its diameter, and two semicircles AG, GB are constructed on the diameter, and from G a perpendicular GD is drawn to AB, and on both sides of it, two circles are drawn, which are tangent to it and tangent to the semicircles, then the(se) two circles are equal.

[2] Proof: Let one of the circles touch GD at Z and the semicircle AB at H and semicircle AG at K. [3] We draw the diameter ZE, then it is parallel to the diameter AB, since the two angles EZG, AGZ are right (angles). [4] We join HE, EA, then line AH is straight, because of what has been explained in the first proposition. [5] Let AH and GZ meet at D; (they will meet) since they are drawn from AG at (angles whose sum is) less than two right angles.

[6] We also join HZ and ZB. Then BH is also a straight line, because of what we have mentioned, and it is a perpendicular to AD, since angle AHB is a right angle because it is located in semicircle AB. [7] We join EK and KG, then EG is also a straight line. We join ZK and KA, then ZA is a straight line. [8] We extend it towards L and we

1. In the first proposition of the Lemmas the following is proved (in the notation of the present proposition): If EZ and AB are parallel diameters of circles which are tangent at H, then HEA and HZB are straight lines.
Two Beautiful Geometrical Theorems by Abū Sahl Kūhī

join BL, and this (line) is also perpendicular to AL. We join DL.

Since AD and AB are two straight lines, and from D a perpendicular DG has been drawn towards AB, and from B a perpendicular BH has been drawn towards DA, which (perpendiculars) intersect at Z, and AZ has been drawn towards L, and it is perpendicular to BL, therefore BLD is a straight line; as we have proved in the propositions which we have made in the commentary of the Treatise on the Right-Angled Triangles.¹

Since the two angles AKG and ALB are right angles, [9] BD and GE are parallel. [10] So the ratio of AD to DE, which is equal to the ratio of AG to EZ, is equal to the ratio of AB to BG. [11] Thus the rectangle AG by GB is equal to the rectangle AB by EZ. [12] In the same way it can be proved for the circle TMN that the rectangle AG by GB is equal to the rectangle AB by its diameter. [13] It is proved by this that the two diameters of the circles ZHK and TMN are equal, and therefore the two circles are equal. That is what we wanted.

[14] The Scholar (Nasawī) said: What he took from the commentary of the Right-Angled Triangles can be proved by means of a lemma, which is a useful proposition in the original (meaning: in its own right?), and especially for acute-angled triangles. We also need it in the sixth proposition of this book. It is as follows:

1. Here “Archimedes” is speaking. The Treatise on the Right-Angled Triangles has not come down to us. Below, Nasawī proves in his two intermediate theorems that the two lines BL and LD are on one straight line. These two theorems boil down to the statement that the three altitudes of a triangle (ABD) pass through one point (Z).
(Figure 5) In triangle ABG, the two perpendiculars (i.e., altitudes) BE, GD have been drawn, intersecting at Z. AZ as been joined and extended towards H. Then it is perpendicular to BG. (Proof:) So we join DE. Then the two angles DAZ, DEZ are equal, because the circle which circumscribes triangle ADZ passes through point E, since angle AEZ is a right angle, and they (the two angles DAZ, EDZ) stand in it (the circle) on the same arc. Again, angle DEB is equal to angle DGB since the circle which circumscribes triangle BDG also passes through point E. So in the two triangles ABH, GBD, the two angles BAH, BGD are equal and angle B is common, so angle AHB is equal to the right angle GDB. So AH is perpendicular to BG.

(Figure 6) And since this preliminary has now been proved, let us repeat from the figure which Archimedes presented (Figure 4) the two lines DA, AB and the perpendiculars DG, BH, AZ, BL and the line DL. We say: if line BLD is not a straight line, let us join the straight line BSD. Then angle BSA is (a) right (angle) by the above-mentioned preliminary. But angle BLA was (shown to be) a right angle. Then the interior angle in triangle BLS is equal to the exterior angle opposite to it. This is absurd. Therefore line BLD is a straight line.

(Ṭūsī is speaking here). [15] Then he (= Nasawī) presented two propositions by Abū Sahl Qūhī. [16] The first of them is as follows. If the two semicircles are not tangent but intersecting, and the perpendicular (is drawn) from the point of intersection, the statement
Two Beautiful Geometrical Theorems by Abū Sahl Kūhī

is as before.

(Figure 7) Thus let there be semicircles \(ABG, ADE\) and \(ZDG\). The two semicircles intersect at \(D\). \(BH\) is drawn perpendicular to \(AG\) from \(H\). Circle \(TKL\) is tangent to circle \(AKG\) at \(K\), to circle \(ZLG\) at \(L\), and to the perpendicular at \(T\). We say: it is equal to the circle which is at the other side according to the same description.\(^1\)

(Proof:) Thus let us draw \(TS\) parallel to \(AG\), and let us join \(GK\), then it passes through \(S\), as Archimedes proved.\(^2\) We extend it until it meets \(HB\) at \(N\). We join \(TG\), then it passes through \(L\), and we extend it towards \(M\). We join \(AM\) and \(MN\), then they are one straight line. We join \(SZ\), then it passes through \(L\). We join \(AK\), then it passes through \(T\).

[17] Line \(AMN\) is parallel to line \(ZS\). Thus the ratio of \(GN\) to \(NS\), I mean the ratio of \(GH\) to \(TS\), is equal to the ratio of \(GA\) to \(AZ\).\(^{[18]}\) So the rectangle \(GH\) by \(AZ\) is equal to the rectangle \(GA\) by \(TS\).\(^{[19]}\) Since in the two circles \(GDZ, EDA\), \(HD\) is perpendicular to the chords\(^3\) \(GZ\) and \(EA\), the rectangle \(GH\) by \(HZ\) is equal to the square of \(HD\), and the rectangle \(AH\) by \(HE\) is also equal to it. So the rectangle \(GH\) by \(HZ\) is equal to the rectangle \(AH\) by \(HE\).\(^{[20]}\) Thus the ratio of \(GH\) to \(HA\) is equal to the ratio of \(EH\) to \(HZ\), that is, equal to the ratio of the

1. I have added the dotted circle to the figure for sake of clarity.
2. Kūhī uses all the time the first proposition of the Book of Lemmas of Archimedes, see my footnote above.
3. It would be more correct to say that \(GZ\) and \(EA\) are the two diameters.
remainder GE to the remainder ZA, so the rectangle GH by ZA, which is equal to the rectangle GA by TS, is equal to the rectangle HA by GE.

[21] If there is on the other side a circle according to the same description, we can also prove by this argument that the rectangle GA by the diameter of that circle is equal to the rectangle HA by GE. Thus it is proved that the diameters of the two circles are equal.

[22] The second (proposition) is this: He (Kūh) said: If the two semicircles are neither tangent nor intersecting, but removed from one another, and the perpendicular passes through the meeting point of two equal tangents to them, the statement is also like this.

(Figure 8) Thus let the semicircles ABG, ADE, ZHG be as we have described. Lines TD and TH are tangent to the semicircles at D and H, and equal, and they meet at T (on diameter AB). Line BT is a perpendicular passing through point T, erected to AG. Let circle MS touch it at M, and let circle MS touch circle ABG at K and circle ZLG at L. [23] We draw diameter MS parallel to AG and we join GK, then it passes through S and meets perpendicular TB at O. We join AK, then it passes through M. We join SZ, then it passes through L. We join GM, then it passes through L and we extend it toward N. We join AO, then it passes through N and [24] it is parallel to ZS. Thus the ratio of GO to OS, I mean the ratio of GT to MS, is equal to the ratio of GA to AZ. [25] Therefore the rectangle GT by AZ is equal to the rectangle GA by MS. [26] By the same argument it is proved that the rectangle
AT by EG is equal to the rectangle GA by the diameter of the circle which is on the other side (of the perpendicular BT).

[27] Since the rectangle AT by TE is equal to the square of TD, which is equal to the square of TH, which is equal to the rectangle GT by TZ, the rectangle AT by TE is equal to the rectangle GT by TZ, [28] so the ratio of AT to GT is equal to the ratio of TZ to TE, and equal to the ratio of the sum AZ to the sum GE. So the rectangle GT by AZ is equal to the rectangle AT by EG. [30] But it has been proved that the rectangle GT by AZ is equal to the rectangle GA by MS, and that the rectangle AT by EG is equal to the rectangle GA by the diameter of the other circle. So the two diameters are equal, and the two circles are equal. That is what was desired. [31]
3. The Dutch paraphrase of the extant fragment of Kühni’s Ornamentation of the Lemmas.

I now present the relevant Dutch passages from the work *Euclidis Beginseelen der Meet-Konst* (Foundations of Geometry by Euclid) by C.J. Voogt (Amsterdam 1695), followed by an English translation. Pages have been indicated between square brackets, thus [p. 218] for page 218.

[p. 189] ’t Aanhangsel des zesten Boeks.

Wy hebben uyt lust, veelvuldig gebruik, en aangemerkt nut des Meet-konsts hier aangehangen deze drie-en-dertig Voorstellen, onder de welke in rang gaan de vijftien voorbewijsen des grooten Wiskonstenaars Archimedes van Siracusen, sijnde ’t twintigste Voorstel deses Aanhangsels zijn eerste …

Translation:

Appendix to the sixth book.

We have appended here these thirty-three Propositions, because of the delight, the many uses, and the above-mentioned utility of Geometry. They include the fifteen Lemmas of the great Mathematician Archimedes of Syracuse in their proper order. The twentieth Proposition of this Appendix is his first (the first proposition of the Lemmas) …

What follows is the Dutch text and translation of “proposition 24” in the Appendix. Some printer’s errors in the edition have been corrected; the corrections have been indicated by an underdot. Example: the error *OPN* on page 219 has been corrected to *APN*. In his text, Voogt prints numerous marginalia with references to theorems, which marginalia are indicated with superscript lower-case letters (*a*, *b*, *c* and so on) in his main text. For example, there is a superscript reference *d* after the line segment *AC* in the first line of
Two Beautiful Geometrical Theorems by Abū Sahl Kūhī ...

page 219; in the margin next to the line there is the reference: d. 31 prop. 1 b. (meaning by Proposition 31 of Book 1 of the Elements). All these superscript references and marginalia have been omitted in the text and translation below. The references to the figures have been added by me. The dotted lines in my figures are also drawn as dotted lines in Voogt’s figures, and italicized words in my text and translation were also printed in italics by Voogt. In my translation I have inserted numbers in square brackets [1], [2], … in order to facilitate comparison with the English translations in Section 2.

(Figure 9) Indien op een rechte streep AC en deszelfs stukken AD en DC drie halve ronden ABC, AED en DFC beschreven worden, enop de rechte AC word uyt de scheyding D gerecht een loodryhangende GD, soo sullen de ronden BHE en LFM in ’t seynstuk beschreven, soodanig datze soo de loodryhangende DG, als de halfronden raken, malkanderen gelijk sijn. [p. 219]

![Figure 9](image)

’t Bewijs. Trek de midstreep HI evenwijdig met AC, daarom H de raking, en de getogene AI en BI, B de raking sijnde, een rechte. Nu nadien de hoek ABC recht is, soo zijn beyde hoeken BAC en ACB

1. Point O and line IO in Figure 9 are not used in the text.
gelijk een rechte, dat is, de hoek BAC minder dan een rechte. Maar de hoek ADH recht sijnde door 't opstel, soo zijn beyde hoeken ADH en BAD minder dan twee rechte, en vervolglik AB en DH kamen in G 't samen, maar BH en CH is een rechte, loodryhangende op AG, ook zijn IE en ED een rechte, als ook AH en KH een rechte. Trekkende CK, soo sal om de rechte hoeken AED en AKC, die malkanderen gelijk zijn, CK evenwijdig met DI sijn, makende alsoo CG evenwijdig met DI. Waar door AD tot HI is, als AG tot GI, en AG tot GI als AC tot CD, dat is, AD tot HI, als AC tot CD, of 't rechthoek ADC gelijk 't rechthoek AC, HI. Met dezelve swier word ook aan 'd andere kant bewesen 't rechthoek ADC gelijk 't rechthoek AC, LM, of HI gelijk LM, en 't vierkant HI gelijk 't vierkant LM Maar nadien de ronden tot malkanderen sijn, als de vierkanten hunner midstreepen [gelijk hier na in 't 2de Vorstel des 12den Boeks sal gethoont worden] daarom sijn de ronden $BHEI$ en LM malkanderen gelijk: dat te bewijsen was.

Byvoegsel.

Dat GC een rechte streep is, heeft die grieck, die dit gevonden heeft, of eenige Arabiers gethoont, dat Ali Abul Hasan tot zijn behulp genomen heeft. Wy zullen 't dus thonen. (Figure 9)

Trekkende CG. Nu is om de gelijke hoeken ABC en CDH, de hoek BAC gelijk de hoek DHC, dat is, gelijk de hoeken DGC en GCH: waar uyt volgt, om de gelijke hoeken GAH en GCH, de hoeken CAH en HGK malkanderen gelijk te sijn. Maar de hoeken AHD en GHK malkanderen gelijk sijnde, soo volgt de hoeken ADH en HKG malkanderen gelijk te sijn , dat is, de hoek HKG of AKC recht, en vervolglik AK ontmoet d’omring ABC in K, en voort om de gelijke hoeken AED en AKC, de rechten DI en CG evenwijdigen.

Voorts brengt Nasvaeus hier noch twee voorvallen op na’t ontwerp van den doorlughtigen Wiskonstenaar Abi Sahl Cuhensis, die dese zijn.

Indien de halfronden APN en OPC malkander in P snijden, waar door de loodryhangende DG op AC gerecht is. Sijnde AC en HI evenwijdige. Trekkende alles als voren. Om 'd evenwijdige CK en IN , is AC tot CN , als AG tot GI.
[p. 220] Maar AG tot GI sijnde, als AD tot HI, soo is AC tot CN, als AD tot HI, en vervolgens 't rechthoek CN, AD gelijk 't rechthoek AC, HI. Wederom 't rechthoek CDO is gelijk 't vierkant DP, welke vierkant DP is gelijk 't rechthoek ADN, daarom 't rechthoek CDO gelijk 't rechthoek ADN, dat is, beyde van 't rechthoek ADC nemende, 't rechthoek AD, NC gelijk 't rechthoek CD, AO, en de rechthoeven AD, NC en AC, HI malkanderen gelijk sijnde door 't gethoonde't rechthoek AC, HI gelijk 't rechthoek CD, AO. Desgelijks bewijst men aan d' andre kant de rechthoeven CD, AO en AC, LM gelijk te sijn, makende alsoo HI gelijk LM.

Indien de halfronden AEN en CFO malkanderen niet raken, maar de gelijk rakende DP en DQ malkanderen in D ontmoeten, en dan DG
The twenty-fourth proposition.

[1, 2] If on a straight line AC and its parts AD and DC three semicircles ABC, AED and DFC are described, and on the straight line AC from the point of separation D a perpendicular GD is erected, then the circles BHE and LFM which are described in the sickle, in such a way that they are tangent to the perpendicular DG and the semicircles, will be equal. [p. 219].
Proof. [3] Draw the diameter HI parallel to AC, then H is the point of tangency, [4] and since B is the point of tangency, the lines AI and BI are one straight line. [5] Now since the angle ABC is a right angle, both angles BAC and ABC are right angles, that is to say that the angle BAC is less than a right angle. But since the angle ADH is a right angle by hypothesis, both angles ADH and BAD are less than two right angles, and consequently AB and DH meet at G, [6] but BH and CH are a straight line, perpendicular to AG; [7] and IE and ED are also a straight line, [8] and also AH and KH are a straight line. If we draw CK, then, because of the right angles AED and AKC, which are equal to one another, [9] CK will be parallel to DI, so CG will be parallel to DI. [10] Therefore, as AD is to HI, so is AG to GI, and as AG is to GI, so is AC to CD, that is, as AD is to HI, so AC is to CD, [11] or the rectangle ADC is equal to the rectangle AC, HI. [12] In the same way it is proved that, on the other hand, the rectangle ADC is equal to the rectangle AC, LM, [13] or HI equal to LM, and the square of HI equal to the square of LM. But since the circles have the same ratio as the squares of their diameters, as will be proved below, in the second proposition of the 12th Book (of Euclid’s Elements in Voogt’s translation), therefore the circles $BHEI$ and LFM are equal: which was to be proved.
Appendix

[14] That GC is a straight line has been shown by that Greek, who has found this (proposition), or by some Arab; which Ali Abul Hasan (Nasawī) has taken as an auxiliary. We will show it in this way.

We draw CG. Now, because of the equal angles ABC and CDH, angle BAC is equal to angle DHC, that is, equal to the angles DGC and GCH: from which follows, because of the equal angles GAH and GCH, that the angles CAH and HGK are equal to one another. But since the angles AHD and GHK are equal to one another, it follows that the angles ADH and HKG are equal to one another, that is, the angle HKG or AKC is a right angle, and as a consequence, AK meets the circumference ABC at K. Further, because of the equal angles AED and AKC, the straight lines DI and CG are parallel.

[15] Further, Nasvæus (Nasawī) presents two more cases here, as designed by the illustrious Mathematician Abi Sahl Cuhensis (Abū Sahl Kūhā), as follows.

[16] (Figure 10) If the semicircles APN and OPC intersect one another at P, through which the perpendicular DG is drawn to AC. AC and HI are parallel. We draw everything as before. [17] Because of the parallels CK and IN: as AC is to CN, so is AD to HI.

[p. 220] But since, as AG is to GI, so is AD to HI, therefore as AC is to CN, so AD is to HI, [18] and as a consequence the rectangle CN, AD is equal to the rectangle AC, HI. [19] Again, the rectangle CDO is
equal to the square of DP, which square DP is equal to the rectangle ADN, so the rectangle CDO is equal to the rectangle ADN, [20] that is, if we subtract each of them from the rectangle ADC the rectangle AD, NC is equal to the rectangle CD, AO. The rectangles AD, NC and AC, HI are equal as has been shown, so the rectangle AC, HI is equal to the rectangle CD, AO. [21] Similarly one can prove on the other hand that the rectangles CD, AO and AC, LM are equal. Thus HI is equal to LM.

(Figure 11) [22] If the semicircles AEN and CFO do not touch, but the equal tangents DP and DQ meet at D, and then DG is perpendicular to AC. Further everything is as above. [24] Because of the perpendiculars CG and IN, as AD is to HI, so is AG to GI, and as AG is to GI, so is AC to CN, that is, as AD is to HI, so is AC to CN, [25] or the rectangle AD, CN is equal to the rectangle AC, HI. [27] Again, since the square DP is equal to the rectangle AND, and the square of DQ is equal to the rectangle CDO, therefore, since DP and DQ are equal by hypothesis, that is to say, because of the equal squares of DP and DQ, the rectangle ADN will be equal to the rectangle CDO. [28] If we subtract these two from the rectangle ADC, then the remainders, rectangle AD, CN and rectangle CD, AO are equal. [29] Since rectangles AD, CN and AC, HI were shown to be equal, the rectangle CD, AO is equal to the rectangle AC, HI. [26] Similarly it is proved on the other side that the rectangles CD, AO and
AC, LM are equal [30] Thus HI is equal to LM.

Since it is necessary to find the point D, we [i.e., Voogt] like to investigate this. Because of what has been shown, the rectangles AND and CDO are equal to one another, that is, as AD is to CD, so is DO to DN, and, putting together, as AO is to CN, so is DO to DN, and, exchanging, as AO is to DO, so is CN to DN, and, putting together, as AO and CN, which makes AC and NO, is to ON, so is CN to DN, by which the point D is also given.
4. Comparison of the Arabic original with the Dutch paraphrase by Voogt.

In the following comparison between the originals in Section 2 by “Archimedes”, Nasawī and Kūhī and the paraphrase by Voogt in Section 3, we will use the numerals in square brackets [1], [2], etc., which I have inserted in the English translations.

The reader may have noticed that the Dutch paraphrase by Voogt in Section 3 differs to some extent from the Arabic original in Section 2. The difference is explained by the fact that Voogt used as his main source the paraphrase by Isaac Barrow, although he may have consulted the Ecchellensis-Borelli translation as well. The close connection between Voogt and Barrow can be shown by the following arguments:

1. For labeling points in the geometrical figures (9, 10, 11), Voogt uses exactly the same letters as Barrow, which are very different from the letters in the Ecchellensis-Borelli translation (and also different from the letters in the Latin translation by Greaves). Voogt’s figure 9 includes line IO which is redundant in Voogt’s own text. The same line IO occurs in Barrow’s figure 267 and is used by Barrow further on in a remark of his own after the sixth proposition of his edition of the Lemmas.

2. The first sentence of [14] is not very intelligible in Voogt’s edition. We can explain it as a sloppy translation by Voogt of the following passage in Barrow: “Either that Greek, who first collected these lemmas, or rather some Arab cited his work on right-angled triangles (in the passage) where CG is shown to be a straight line. Hence Ali Abu’l-Hasan took this (i.e., the following, namely Barrow’s paraphrase of the theorems of Nasawī, see Figures 5, 6) in the way of auxiliary.” The author to whom Barrow refers as “that Greek or rather some Arab” is our “Archimedes.”

3. Broken lines in Barrow’s figures are displayed as broken lines in

Voogt’s figures (except the diameters of the complete circles). In Arabic manuscripts the figures were all drawn by hand so this technique was not available to Kūhī. Even in the Latin translation, all lines in the figures are continuous.

4. In [16] and [22], neither Voogt nor Barrow explains Kūhī’s two theorems too clearly. The reader only finds out in the end what exactly Kūhī wanted to prove. The description in the originals is much clearer.

5. The marginalia in Voogt’s edition resemble the marginalia in Barrow’s, and are also indicated by superscript lowercase letters in the text. Voogt has even more marginalia than Barrow.

But Voogt’s paraphrase is not a direct translation from Barrow’s edition. Voogt deleted Barrow’s mathematical symbolism, such as $IE + ED$ for line IED; $GD \perp DA$ for GD perpendicular to DA; $AD.IH::AG.GI$ for the ratio of AD to IH is the ratio of AG to GI; $AD \times IH$ for the rectangle contained by AD and IH; DPq for the square of DP, and so on. See below for an example. In this sense, Kūhī’s original is closer to the Dutch version than to Barrow’s Latin version.

Passage [8]-[9] is interesting because of the errors that were made in its transmission. “Archimedes” first states that AE and HE are one straight line (this is correct and proved in proposition 1 of his Lemmas.) He or she then introduces K as the point of intersection of AH extended and the circle ABC. Then AK is a straight line by definition. “Archimedes” draws CK and GK and says that they are a straight line, according to a theorem which he proved in his commentary to the Treatise on the Right-Angled Triangles.

Here Barrow is less clear than the original because he implicitly defines K as a point on AH extended. His text reads (in my translation).

“$IE + ED \& AE + EK$ are straight lines. But $GD \perp DA$, & if one draws $CK \perp KA$, then the extension CKG will be a straight line. Because $ED||CG$, because of the right angles AED, AKC, we will have $AD.IH::(AG.GI ::)AC.CD$…”

1. $IE + ED, \& AE + EK$ etiam rectae. Est autem $GD \perp DA, \& juncta CK \perp KA$, quare producta CKG recta erit. Quoniam vero $ED||CG$, propter rectas AED, AKC, erit $AD.IH::(AG.GI ::)AC.CD$.
Voogt is even less clear than Barrow. Voogt does not say that AE and EH are straight lines, nor does he define point K. In [8] he mentions segments AH and KH and says that they are a straight line, with a reference to proposition 31 of Book III of the *Elements*. This proposition shows that the angle in a semicircle is a right angle, but the reference is useless because AHK is a straight line by definition (that point E lies on AHK has to be proved). Voogt then implicitly assumes in [9] that CKG is a straight line.

Nasawī provides two intermediary theorems in [14] (Figures 5, 6) which solve the difficulty. They boil down to the fact that point H is the intersection of the two altitudes GD and CB in triangle ACG. Then it can be proved that H is also on the third altitude, so AH extended meets CG at right angles in the point of intersection K.

Barrow repeats the proof by Nasawī. But Voogt provides a different proof in his *Byvoegsel* (Appendix) in [14] (Figure 9). Here it is assumed that CB and GD are altitudes in triangle ACG. Voogt does not care to tell his reader how point K should be defined. Let us try to derive the implicit definition from the proof. Voogt first notes (correctly) that (because B and D are right angles), $\angle BAC = \angle DHC = \angle DGC + \angle HGC$ (the exterior angle of a triangle is the sum of the two non-adjacent interior angles). Then he remarks that $\angle GAH = \angle GCH$. The text has a reference to Euclid’s *Elements* III: 22, to the effect that the sum of opposite angles of a concyclic quadrilateral is equal to two right angles. This theorem is irrelevant, so it is likely that Voogt wanted to refer to *Elements* III: 21, stating that the two angles $\angle GAH$ and $\angle GCH$ are equal because they stand on the same arc of a circle. Figure 9 shows that the circular arc in question must be arc BK of circle ABC; *Elements* III: 21 can only be used if point K is on the circle and line CKG is a straight line. Voogt assumes the result which he has to prove, so his proof is a failure. Thus the transmission led from a theorem by “Archimedes”, which was clarified by Nasawī, via an unclear exposition by Barrow, to an incorrect proof by Voogt.

Voogt made an interesting addition, namely the construction in [31] of the point on the diagonal from which the two equal tangents can be drawn to the small semicircles. This explanation is found neither in
the extant fragment of Kühni’s Ornamentation of the Lemmas, nor in one of the Latin translations, nor in Barrow’s edition.

Thus, Kühni’s two theorems were fascinating to a whole series of mathematicians in the Islamic and the European traditions.

References

Barrow, I., Archimedis Opera; Apollonii Pergaei Conicorum libri IIII; Theodosii Sphrica, methodo nova illustrata, et succinct demonstrata, per Is. Barrow, London 1675.

Heiberg, J.L., Archimedis Opera Omnia com commentariis Eutocii, 1910.

Rosenfeld, B.A.; Ihsanoğlu, E., Mathematicians, Astronomers and Other Scholars of Islamic Civilization and their Works (7th-19th c.), Istanbul 2003.

Van der Aa, A.J., Biographisch Woordenboek der Nederlanden, Haarlem 1852-1878.

Ver Eecke, Paul, Les Oeuvres Complètes d’Archimède, suivies des commentaires d’Eutocius d’Ascalon, Bruges 1921.

Ecchellensis and Borelli is found in Apollonii Pergaei Conicorum Lib. V. VI. VII. paraphraste Abalphato Asphahanensi nunc primum editi, Additus in calce
Two Beautiful Geometrical Theorems by Abū Sahl Kūhī ...

Archimedes Assumptorum Liber ex codicibus arabicis mss. ... Abrahamus Ecchellensis Maronita ... latinos reddidit Io.[hannes] Alfonso Borellus in Geometricis versione contulit, Florentiae 1661.
Appendix

3. p. 58-63, Autolycus, Moving Sphere, GAS V, 82.
5. p. 88-95, Theodosius, Inhabited Places, GAS V, 155.
6. p. 98-117, Autolycus, Risings and Settings, GAS VI, 73.
9. p. 171-184, Aristarchus, Sizes and Distances of the Sun and Moon, GAS VI, 75, dated.
13. p. 221-331, Menelaus, Spherics, GAS V, 162 no. 5. The last three pages (328-331) are not found in the Hyderabad edition.
18. p. 541-545, Archimedes, Measurement of the Circle, GAS V, 130 no. 2.
Appendix 2: Arabic Texts

This appendix contains an Arabic text of “Proposition 5” of the *Lemmas* of “Archimedes”, the two related proposition by Kūhi, and two intermediary theorems by Nasawī. My edition is based on the Hyderabad edition of the *Middle Books*. The text has been compared to the recent facsimile of the *Middle Books* published by Dr. Aghayani Chavoshi. The Arabic texts in this section are not intended as critical edition.

Arabic text of the preface to the *Lemmas*

تحرير كتاب مأخوذات أرخيميدس ترجمة ثابت بن قرة وتفسير الأسئلة المختصّة أي
الخمسة علي بن أحمد النسوي خمسة عشر شكلًا.

قال الاستاذ المختصّ هذه المقالة مسوبة إلى أرخيميدس وفيها أشكال خمسة قليلة
العدد كثيرة القوائد في أصول الهندسة في غاية الجودة والنافقة قد أضافها المبتدين إلى جملة المتوسطات التي يلزم قراءتها فيما بين كتاب أقيليس و المجسته إلا أن في بعض أشكاله مواضع تحتاج إلى أشكال أخر يتم بما بيان ذلك الشكل وقد أشار في بعض ذلك أرخيميدس إلى أشكال أخرى في سائر مصنفاته وقال كما ينبغي في
أشكال القائمة الزوايا وكما في تفسيرنا في جملة القول في المثلثات وكما قد تبين
في قولنا في الأشكال ذات الأضلاع الأربعة. و أورد في الشكل الخامس برهانًا
على طريق فيه نظر أحسّن ثم من بعد ذلك عمل أبوسهل القوهوي مقالةً ممّا أُسمى توبة
كتاب أرخيميدس في المأخوذات وأورد برهان ذلك الشكل بطريقة أعمّ واحسن مع
ما يتعلق به من تركيب النسبة وتأليفها فلما وجدت المقالة حملت هذه جملة
للمواضع الغامضة من هذه المقالة شرحاً على سبيل تعليل الحواري و بينت ما إشار
 إليه بأشكال آتته إليها خاطري وأوردت من أشكال آي سهل شكلين يحتاج إليها.
Arabic text of Proposition 5 by "Archimedes" (Figure 4), two intermediary theorems by Nasawī (Figures 5, 6) and the two theorems by Kūhī (Figures 7, 8).
Two Beautiful Geometrical Theorems by Abū Sahl Kūhī

 وإنصل زائدة فاز فكاً مستقيم وخرجته إلى ل ونصل النه من اعب وهو أيضاً عمود على ل ونصل دل.

 ولأن أب مستقيم وأنجر من د إلى اب عمود دج ومن ب إلى دا عمود حي فيقاطعان على ز وأجرج أوز إلى د وكان عموداً على د كون د مستقيم كن ابداً في الأشكال التي عملناها في شرح القول في المثلثات القائمة الزوايا.

 ولأن زاويتين أكيد آب قائمتان فنستح فجزة متوازيان فنسبه آب إلى دا زه هي كنسية آب إلى حز كنسية آب إلى حز فسطح آب في حز مسارو لسطح آب في حز ونمثل ذلك تبين في دائرة حزن أن مسطح آب في حز مسارو لسطح آب في حز فقطرها ونثبت من ذلك أن قطر دائرتي زحل حزن متضامنول فذا الدائرتان.

 متساويان وذلك ما ارتدنا.

 قال الامام ونثبت ما أحاله على شرح المثلثات القائمة الزوايا من مقدمة وهي شكل مفيد في الأصل وخاصية في المثلثات حاد الزوايا ونحتاج إليه في الشكل السادس من هذا الكتاب وهي هذه مثلث أب آخر في عموداً حكد المثلثات على ز ووصل ز وأجرج إلى ح فنهم عموداً حود. فنصل دا كون زاويتين دار دم متضامنول لأن الدائرية التي تحيط لمثلث أدداً حمز بنقطة عاً لكون زاوية حمز قائمة ونما يقعن فيها على قوس واحدة وأداً زاوية ده مثل زاوية دح للدائرية التي تحيط بمثلث عداً حمز بنقطة عاً أيضاً فذي مثلث دح خذ زاويتين متضامنول وزاوية ب مشتركة فزاوية ححا مثل زاوية حح القائمة دح عمود على حح.
وأذا تقدمت هذه المقدمة فلنبعد من الشكل الذي أوردته أرسطو دقيقًا دَعَب وأعمدة دَمَجَ بين آن بَلل وخط دَل. ويقول إن لم يكن خطًا مستقيماً فنصل بعد المستقيم وتكون زاوية بين قائمة للمقدمة المذكورة وكانت زاوية بين قائمة فالداخلة في مثلث مساوية للمخارجة المقابلة له هذا خلف فكذا خط بل خط مستقيماً.

ثم أورد شكلين لأبي مهيل الكوهي أوهما هذا لم يكن نصًا رسالة.

متماسين ولكن متقطعين وعمود من موضوع التقاطع كان الحكم كما مرّ.

فلتكن الاصطاد الدوائر بين أده زُجر ونصفا الدائرتين متقطعين على دَعَب عمودًا على أده خارجًا من ج ودائرة طَلَك مماسة لدائرة أكَبَر على ك ولدائرة رَجَب على ل ولعمود على ط وتقول فهي مساوية للمخارجة التي تكون.
في الجانب الآخر هذه الصفة.
فلنخرج خط موازي لـجح ولنصل جـك فهي يمر بنـك كما يـن بر أمـتيد.
ونخرج إلى أن تلقى عمود جـح على جـح ولنصل جـح في عمود بل ونخرجه إلى مـ
ونصل جـم من فهم خط مستقيم ولنصل جـم فهو يمر بل ولنصل جـم في عمود بـطـ

وخط أمـم مواز خط رـم ونسبة جح إلى جح أعني نسبة جح إلى مـم كنسبة
جح إلى جح فسطح جح في رـم مساو لسطح جح في مـم ولأن حـم عمود في
دائرة حـح ما ينبر على ونيري حـح ما يكون مسطح جح في جح مـم مساو لمـم
ومسطح حـح في حـح أعباً مساوأً له فسطح جح في جح مـم مساو لسطح حـح في حـح
ونسبة جح إلى حـح كنسبة جح إلى حـح بل كنسبة حـح الباقية إلى رـم الباقية مـم
وسط حـح في رـم المساو لسطح جح في مـم مساو لسطح حـح في حـح وإذا كانت
في الجانب الآخر دائرة بالصفة المذكورة فيننا هذا التدبير أيضاً أن مسطح حـح في قطرـ
تلك الدائرة كسطح حـح في حـح فيننا أن قطرية الدائرتين متساويان.
وأما الثاني فهو هذا قال وإن لم يكن نصفا الدائرتين متساويين ولا متقاطعين لكن
متباعدتين والعمود يمر بالثقبان الخطين المماسيين فهما المتساويين كان الحكم كـذلك
بـيضًا.
فلیکن انساف الدوائر افزوده زوجه‌ای علی ما وصفنا وخطا طول میانی
لتصفي الدائرتين علی دّو ومتقارین وقت طول وخط دو عمود مار
نقطه طول قائمی علی آنو ولتعامه دائرة مس علی مّ ولنگام دائرة مس
 دائرة لّوی علی لّ ودائرة زوجه علی لّ وترخج قطر مس موازیا لس لّوی
ونصل جمل فیمّر بس ویلقی عمود طلب علی لّ ونصل آن فیمّر بم ونصل سر
فیمّر بس ونصل جمل فیمّر بس وترخج علی دّو ونصل آن فیمّر بم ویکون موازیا
لمس ویکون نسبه جمل علی عنعّش عaggi نسبه حجع علی مس کنسپی‌هایا علی آن
فسطح حجع علی مسیا لسطح جسا علی مس وعملی نظام تقسیم بین عن سطح انت
فیمّرًا یکون مسیا لسطح جسا علی قطر الدائره الی تکون من الجوان الاحضر
ولآن سطح انت علی مسیا لسطح جسا علی قطر الدائره الی تکون من الجوان الاحضر
وعلی طول مسیا لسطح جسا علی قطر الدائره الی تکون من الجوان الاحضر
وعلی طول مسیا لسطح جسا علی قطر الدائره الی تکون من الجوان الاحضر
وآن سطح انت علی مسیا لسطح جسا علی قطر الدائره الی تکون من الجوان الاحضر
وآن سطح انت علی مسیا لسطح جسا علی قطر الدائره الی تکون من الجوان الاحضر