A New Approach to Solve Multiple Objective Programming Problems

Mahmood Rezaei Sadrabadi & Seyed Jafar Sadjadi

Mahmood Rezaei Sadrabadi, is a master student in the Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands.

Seyed Jafar Sadjadi, is a faculty member in the Department of Industrial Engineering, IUST, Tehran, Iran

KEYWORDS

Multiple objective programming, Multiple objective linear programming, Interactive procedures

ABSTRACT

Multiple Objective Programming (MOP) problems have become famous among many researchers due to more practical and realistic implementations. There have been a lot of methods proposed especially during the past four decades. In this paper, we develop a new algorithm based on a new approach to solve MOP problems by starting from a utopian point (which is usually infeasible) and moving towards the feasible region via stepwise movements and a plain continuous interaction with Decision Maker (DM). We consider the case where all objective functions and constraints are linear. The implementation of the proposed algorithm is demonstrated with two numerical examples.

© 2009 IUST Publication, All rights reserved. Vol. 20, No. 1-2

1. Introduction

During the past four decades, many methods and algorithms have been developed to solve Multiple Objective Programming (MOP) problems, in which some objectives are conflicting and the utility function of the Decision Maker (DM) is imprecise or fuzzy in nature. MOP is believed to be one of the fastest growing areas in management science and operations research, in that many decision making problems can be formulated in this domain. Decision making problems with several conflicting objectives are common in practice. Hence, a single objective function is not sufficient to guide the search for the optimum solution for such problems. Because of this limitation, a MOP method is needed to solve many real world applications (J. Kim and K. Kim, 2006).

Although different solution procedures have been introduced, the interactive approaches are generally believed to be the most promising ones, in which the preferred information of the DM is progressively articulated during the solution process and incorporated into it. The purpose of MOP problems in the mathematical programming framework is to optimize different objective functions, subject to a set of systematic constraints. A mathematical formulation of a MOP problem is also known as the vector maximization (or minimization) problem. Generally, MOP problems can be divided into four different categories. The first group of MOP problems does not need to get any information from DM during the process of finding an efficient solution. These types of algorithms rely solely on the pre-assumptions about DM's preferences. In this category, L-P Metric methods are noticeable, algorithms whose objectives are the minimization of deviations of the objective functions from the ideal solution. Since different objectives are different in nature, they must be normalized before the process of minimization of deviations starts. Therefore, a new problem is minimized which has no scale (Zeleny, 1982). The second group of MOP problems includes gathering cardinal or ordinal preferred information before the solving process initiates. In the method of Utility Function (Kenney and Raiffa, 1976), for example, we have to determine DM's utility as a function of objective functions and then we maximize the overall function under the initial constraints. The other method in this group, which is extensively used by many researchers, is Goal Programming (GP) (Romero, 1991; Gibbs, 1973) in which DM determines the least (the most) acceptable level of Max (Min) functions. Since attaining these values might lead to an infeasible
point, the constraints are allowed to exceed, but we try to minimize these weighted deviations.

The third group of MOP problems provides a set of efficient solutions in which DM has an opportunity to choose his preferred solution among the efficient ones (Hwang and Masud, 1979). The set of all efficient feasible solutions in a Multiple Objective Linear Programming (MOLP) problem can be represented by convex combination of efficient extreme points and efficient extreme rays in the feasible region. Therefore, the set of efficient extreme points and efficient extreme rays can be regarded as the solution set for a MOLP problem (Ida, 2005). Finally, the forth group of MOP problems provides solutions based on a continuous interaction with DM and tries to reach the preferred solution at the end of the algorithm. Based on this sound idea, there are many developed methods categorized in this group. Homburg (1998), for instance, proposed a hierarchical procedure which consists of two levels, a top-level and a base-level. The main idea is that the top-level only provides general preference information from DM. Taking this information into account, the base-level then determines a compromise solution via interaction with DM by using an interactive procedure.

As another instance, Tchebycheff metric based approaches have become popular in this category for sampling the set of efficient solutions in an continuous interaction with DM to narrow his choices down to a single most preferred efficient solution. These approaches systematically reduce the set of efficient solutions which remain available for identification and selection from one iteration to the next. The only requirement on the part of the DM is to select a single most preferred solution from among a more and more concentrated set of efficient solutions at each iteration (Reeves and MacLeod, 1999). The interaction with DM proceeds by generating smaller subsets of the efficient set until a final solution is located.

To see another works in the group of interactive methods, interested reader can refer to (Geofffrion, 1972; Reeves and Franz, 1985; Zionts and Wallenius, 1983; Benayoun et al., 1971; Hwang and Masud, 1979; Tabucanon, 1988; Steuer and Choo, 1983; Steuer et al., 1995; Sun et al., 2000; Gardiner and Steuer, 1994; Malakooti and Alwani, 2002; Kaliszewski and Michalowski, 1999; Sun et al., 2000; Chen and Lin, 2003). There are many advantages on using interactive methods such as:

- there is no need to get any information from DM before the solving process initiates,
- the solving process helps DM learn more about the nature of the problem,
- only minor preferred information are needed during the solving process,
- since DM continuously contributes via analyst to the problem, he is more likely to accept the final solution,
- there are fewer restricting assumptions involved in these types of problems in comparison with other groups of MOP methods.
- However, there are some drawbacks associated with these types of algorithms that the most important ones are as follows:
 - the accuracy of the final solution depends entirely upon DM’s precise answers. In other words, if DM does not carefully interact with the analyst, the outcome(s) of the final solution may be undesirable,
 - there is no guarantee to reach a desirable solution after a finite number of iterations,
 - DM needs to make more effort during the process of these algorithms in comparison with other groups.

During the past decades, many researchers have tried to review or to discuss the strengths, the weaknesses, and the comparative studies on the existing methods. The main goals of these papers are to introduce some criteria to measure the efficiency of various algorithms and to introduce the characteristics of a good method (Aksoy, 1996; Buchanan and Daellenbach, 1987; Gibson et al., 1987; Lotfii et al., 1997; Mote et al., 1988, Reeves and Franz, 1985). In this domain Borges and Antunes (2002) dealt with the sensitivity analysis of the weights in MOLP problems. Sun (2005) examined some issues in measuring and reporting solution quality when value functions are used in computational experiments of interactive MOP procedures. He discussed value functions used, weights assigned to the objective functions in the value functions, the size of the efficient set, the number of objective functions, the feasibility of the ideal and nadir points, and existence of the ideal and nadir points.

Alves and Climaco (2007) made a review of interactive methods devoted to solve Multiple Objective Integer Programming (MOIP) and Multiple Objective Mixed-Integer Programming (MOMIP) problems. Their focus is on interactive MOIP and MOMIP methods, including their characterization according to the type of preference information required from the DM, the computing process used to determine efficient solutions and the interactive protocol used to communicate with the DM. Reeves and Franz (1985), introduced the characteristics of a proper interactive algorithm as follows:

1. Minimum amount of information be required from DM,
2. The nature of decision making be simple,
3. If DM provides his answers improperly in some interactions, he has had an opportunity to compensate it in the following interactions,
4. The number of iterations to reach the final solution be reasonable,
5. DM be familiar with the nature of judgments he is asked for,
6. The algorithm be suitable for solving large scale problems.
In this paper, we propose a new algorithm which is mainly in the group of interactive methods. However, we also need to get some information from DM before problem solving initiates; therefore, this algorithm is neither a pure interactive method nor a pure method in the second category. In addition, the proposed algorithm is based upon a novel approach to the problem, starting from an infeasible utopian point and moving towards the feasible region and then the final efficient point. The remaining of this paper is organized as follows. Section 2 provides some of the necessary definitions we need to use in this paper. In section 3, the problem statement and the proposed algorithm are explained. Two numerical examples are demonstrated in section 4 to illustrate the proposed algorithm. Finally, the conclusion remarks appear in section 5 to summarize the contribution of the paper.

2. Definitions
The best results will be obtained if your MS-Word 2003 application has several font sizes. The main font used throughout the document is Times New Roman. Try to follow the font sizes specified in Table 1, as best as you can.
Consider a MOLP problem defined as follows,

\[
\text{max}\{Z = f_k(X) = C^*_kX; k = 1,2,...,r\} \quad \text{s.t.}
\]

\[M = \{X \in \mathbb{R}^n \mid A_iX \leq b_i; X \geq 0; i = 1,2,...,m\}\]

where,
\[f_k(X) : \text{the } k\text{th objective function},\]
\[C_k : \text{the vector of coefficients in the } k\text{th objective function},\]
\[X : \text{an } n\text{-dimensional vector of decision variables},\]
\[A_i : \text{the } i\text{th row of technological coefficients},\]
\[b_i : \text{the RHS of the } i\text{th constraint},\]
\[M : \text{the feasible region.}\]

A solution \(\bar{X} \in M\) is efficient if and only if there does not exist another \(X \in M\) such that \(f_k(X) \geq f_k(\bar{X})\) for all \(k = 1,2,...,r\) and \(f_j(X) > f_j(\bar{X})\) for at least one \(k\). Then, the vector,

\[
\bar{Z} = \{f_k(\bar{X}); k = 1,2,...,r\}
\]

(2)

is called a non-dominated criterion vector. All efficient solutions in \(M\) form the efficient set \(E\). Although some interactive algorithms search the entire feasible region \(M\), the majority of them are designed to search only the efficient set \(E\). The vector,

\[
Z^* = \{f_k(X^*) = f_k(X^*) = \max f_k(X); k = 1,2,...,r\}
\]

(3)

is called the ideal point or the ideal criterion vector. It should be mentioned that the ideal criterion vector, and so the ideal solution \(X^*\), does not usually exist. The vector,

\[
Z'' = \{f_k(X'') = f_k(X'') = \max f_k(X); k = 1,2,...,r\}
\]

(4)

called a utopian vector or a utopian point. Unlike the ideal criterion vector, there exist many utopian vectors. Nevertheless, their corresponding \(X''\)'s are most likely infeasible.

3. Problem Statement
The majority of methods proposed in the domain of interactive procedures search the feasible region \(M\) or the efficient set \(E\) through interaction with DM in order to attain the final solution. Here, we develop a new algorithm to solve MOLP problems by starting from a utopian point \(X^*\) (which is usually infeasible) and moving towards the feasible region \(M\) and then the efficient set \(E\) via stepwise movements and a plain continuous interaction with DM in order to be in line with his preferences. Since there are many utopian points outside the \(M\), we choose the closest \(X^*\) to \(M\) as the start point, by considering the least sum of weighted deviations from the constraints.

3.1. The Proposed Algorithm
The proposed algorithm attains an efficient solution of a MOLP through the following steps:

Begin:

Step 1. Ask DM to determine \(a_k\), the maximum acceptable reduction in the amount of \(f_k\) in any interaction. Also, ask him to determine \(w_i\), a penalty for deviation of each unit from the \(i\)th constraint. In the next step, we find a utopian point allowing some deviations from the constraints \(x_j \geq 0\), in that the utopian point maybe a point with some negative \(x_j\)’s. However, we also consider a big penalty, \(w\)’, for each unit of such deviations.

Step 2. Maximize each \(f_k(X)\) with consideration of the feasible set \(M\) as follows,

\[
\text{max}\{f_k(X) = C^*_kX\} \quad \text{s.t.}
\]

\[M = \{X \in \mathbb{R}^n \mid A_iX \leq b_i; X \geq 0; i = 1,2,...,m\}
\]

(5)

Step 3. Let \(f_k(X')\) be the optimal solution for each \(f_k(X); k = 1,2,...,r\) . Solve the following GP problem,

\[
\min \sum wjd + w\sum d'j \mid f_k(X') \geq f_k(X); A_iX \leq b_i + d_i
\]

\[; x_j \geq -d'; d \geq 0; i = 1,2,...,m; j = 1,2,...,m; k = 1,2,...,r\]

(6)

where, \(d_j\) represents the deviation from the \(i\)th constraint. In this step, we allow our solution to go
outside the feasible region. Suppose X is the solution for (6). Set $X^* = X$ and go to step 4.

Step 4. Let θ_a be the angle between f_i and f_k. Calculate $\sin \theta_a$ as follows,

$$\sin \theta_a = \frac{1 - C_i C_i}{|C_i| - |C_i|}$$

(7)

Now, we can determine a small step δ by which we move towards the feasible region in each iteration as,

$$\delta = \min \left\{ \frac{a_i}{|C_i| \sin \theta_a} : i, k = 1, 2, \ldots, r; i \neq k \right\}$$

(8)

Step 5. Consider constraints $f_i(X^*) \geq f_i(X^-)$ which remain active. Now ask DM to see which active objective has the least desirability. Let l be the index for the f_l which has the least desirability.

Step 6. Solve the following optimization problem in which we take a step at most with the amount of δ from X^* on the boundary of the feasible region while we hold the amounts of $f_k; k = 1, 2, \ldots, r$,

$$\max \{f_i(X) \mid f_i(X) \geq f_i(X^*); A X \leq b; |X - X^*| \leq \delta \}
: x_i \geq 0; i = 1, 2, \ldots, m; j = 1, 2, \ldots, n; k = 1, 2, \ldots, r\}

(11)

Step 7. If $\sum_{i=1} w_i d_i + w \sum_{j=1} d_j = 0$, then go to step 8, otherwise set $X^* = X$, calculate the new values of $f_i(X^*)$, and go to step 5.

Step 8. $\sum_{i=1} w_i d_i + w \sum_{j=1} d_j = 0$ implies that we are inside the feasible region, but most likely not on the boundary. Therefore, we take a smaller step to be stopped on the boundary by solving,

$$\min \{ |X - X^*| \mid f_i(X) \geq f_i(X^*); A X \leq b; x_i \geq 0; \}
: i = 1, 2, \ldots, m; j = 1, 2, \ldots, n; k = 1, 2, \ldots, r\}

(10)

There is no guarantee that the solution of step 8 is a non-dominated one. So, we move on the boundary to reach a non-dominated solution. Set $X^* = X$, $S = \{1, 2, \ldots, r\}$, and go to step 9.

Step 9. Ask DM to see which objective in S has the least desirability. Let l be the index for the f_l which has the least desirability. Solve the following optimization problem in which we take a step at most with the amount of δ from X^* on the boundary of the feasible region while we hold the amounts of $f_k; k = 1, 2, \ldots, r$,

$$\max \{f_i(X) \mid f_i(X) \geq f_i(X^*); A X \leq b; |X - X^*| \leq \delta \}
: x_i \geq 0; i = 1, 2, \ldots, m; j = 1, 2, \ldots, n; k = 1, 2, \ldots, r\}

(11)

Step 10. If $f_i(X) > f_i(X^*)$ then set $S = \{1, 2, \ldots, r\}$ and go to step 9, otherwise set $S = S - l$ and go to step 11.

Step 11. If $S = \emptyset$ then choose X as the final efficient solution, otherwise set $X^* = X$ and go to step 9.

End.

It should be noted that steps 1-8 helps us to reach to the feasible region M by starting from the closest utopian point in line with DM’s preferences, whereas steps 9-11 guarantee that the final solution is an efficient one, i.e., the final solution is in E.

3.2. Some Lemmas to Determine δ

Here, we show how to choose δ in Step 4 of the proposed algorithm with the following three lemmas.

Lemma 1: Any step δ along gradient vector C_i will result a decrease (or increase) of $|C_i|$. The angle between C_i and the axis j helps us to compute the projection of C_i over the axis j, i.e., if we take a step δ along vector C_i, the amount of change in each element of x_j is $\delta \cos \alpha$ depending on the direction we choose.

Proof: Let α_{ij} be the angle between C_i and axis j. Therefore,

$$\cos \alpha_{ij} = \frac{C_i j}{|C_i| |j_x|} = \frac{(c_{i_1}, \ldots, c_{i_q}, \ldots, c_{i_n}) (0, \ldots, j, \ldots, 0)}{|C_i| |j_x|} = \frac{c_{ij}}{|C_i|}$$

(12)

where, x_j is the jth unique vector in an n-dimensional space. The angle between C_i and x_j helps us to compute the projection of C_i over the axis j, i.e., if we take a step δ along vector C_i, the amount of change in each element of x_j is $\delta \cos \alpha_{ij}$ or $\delta \cos (\pi - \alpha_{ij})$ depending on the direction we choose.

Fig. 1 depicts the gradient vector C_i and its projection in a 2-dimensional space.
Therefore,
\[\Delta x_j = \delta \cos \alpha_u = \delta \frac{c_u}{|C_i|} \]
(13)

or
\[\Delta x_j = \delta \cos(\pi - \alpha_u) = -\delta \cos \alpha_u = -\delta \frac{c_u}{|C_i|} \]
(14)

Therefore, we can compute the change in the amount of \(k_f \) as follows,

\[
\sum_{j \in S} c_j \Delta x_j = \sum_{j \in S} c_j \delta \frac{c_u}{|C_i|} = \delta |C_i| = \delta |C_i|
\]

(15)

We now present a generalized form of Lemma (1).

Lemma 2: Any step \(\delta \) along \(C_i \) which makes the angle \(\theta \) with \(k_C \) will result a decrease (increase) of \(\delta \sin \theta_a \) in \(k_f \).

Proof: It is clear that taking a step \(\delta \) along \(l_C \) which makes the angle \(\theta \) with \(k_C \) is the same as taking a step \(\delta \cos \theta_a \) along \(C_i \). Using the results of Lemma (1) yields,

\[
|\Delta f_i| = \delta \sin \theta_a |C_i|
\]

(16)

Lemma 3: Let \(H_i \) be a hyperplane which is orthogonal on \(C_i \) and \(C_i \) makes the angle \(\theta \) with \(C_i \). Any step \(\delta \) on the hyperplane \(H_i \) in any direction will result a decrease (increase) of \(\delta \sin \theta_a |C_i| \) in \(f_i \).

Proof: We prove this lemma in two steps. In the first step, let \(0 \leq \theta_a \leq \pi / 2 \), then taking any step \(\delta \) on \(H_i \) in any direction is the same as taking a step \(\delta \) in the direction whose angle with \(C_i \) is \(\theta_a - \pi / 2 \) or \(3\pi / 2 - \theta_a \). Fig. 2(b) demonstrates the situation in a 2-dimensional space. Using similar argument used in the first step yields,

\[
|\Delta f_i| = \delta \sin \theta_a |C_i|
\]

(19)

Now, in the second step, suppose \(\pi / 2 \leq \theta_a \leq \pi \). Taking any step \(\delta \) on \(H_i \) in any direction is the same as taking a step \(\delta \) in the direction whose angle with \(C_i \) is \(\theta_a - \pi / 2 \) or \(3\pi / 2 - \theta_a \). Fig. 2(b) demonstrates the situation in a 2-dimensional space. Using similar argument used in the first step yields,

\[
|\Delta f_i| = \delta \sin \theta_a |C_i|
\]

(20)

or

\[
|\Delta f_i| = \delta \sin \theta_a |C_i|
\]

(21)

Finally, we have,

\[
|\Delta f_i| = \delta \sin \theta_a |C_i|
\]

(22)

Now, we are ready to determine the amount of \(\delta \) properly. Suppose DM determines that he wouldn’t expect any reduction more than \(a_i \) in the amount of \(f_i \) in any interaction. When we perform step (4) in the algorithm, actually we keep \(f_i \) unchanged. In order to achieve this goal, we have to take step \(\delta \) on \(H_i \). According to lemma (3), the step leads to an increase (decrease) \(\delta \sin \theta_a |C_i| \) in \(f_i \).

There is no problem in our approach in case \(f_i \) increases. However, we must ensure that the step \(\delta \) would not worsen \(f_i \) more than \(a_i \), which suggest to keep the following condition,

\[
\delta \sin \theta_a |C_i| \leq a_i \ ; k = 1, \ldots, r; k \neq l
\]

(23)

or
\[\delta \leq \frac{a_i}{|C_i| \sin \theta_i}; k = 1, \ldots, r; k \neq l \] (24)

Holding (19) in all interactions throughout the algorithm guarantees that there would be no reduction in any \(f_j; k \neq l \) more than \(a_i \). Since DM is entitled to keep the amount of any \(f_j \), the following condition must be hold in order to obtain an appropriate \(\delta \),

\[\delta \leq \frac{a_i}{|C_i| \sin \theta_i}; k, l = 1, \ldots, r; k \neq l \] (25)

Finally, we are about to determine the best amount of \(\delta \) with consideration of DM’s intentions and concurrently reaching to the feasible solution by implementing the algorithm as fewer interactions as possible. Thus, we have,

\[\delta = \min \left[\frac{a_i}{|C_i| \sin \theta_i}; k, l = 1, \ldots, r; k \neq l \right] \] (26)

4. Numerical Examples

In this section we demonstrate implementation of the proposed method using two numerical examples.

4.1. Example 1

Consider the following MOLP problem with two objective functions,

\[
\begin{align*}
M \ ax \ z_1 &= x_1 + 6x_2 \\
M \ ax \ z_2 &= 5x_1 + 2x_2 \\
ST \ .
\end{align*}
\]

\[
\begin{align*}
-x_1 + 4x_2 &\leq 20 \\
7x_1 + 9x_2 &\leq 63 \\
22x_1 + 15x_2 &\leq 165 \\
x_1 &\leq 6.5 \\
x_1, x_2 &\geq 0
\end{align*}
\] (27)

We first ask DM to specify his sensitivity about the constraints and the objectives.

As we already defined, \(w_i \)'s are the penalties associated with the constraints and \(a_i \)'s are the permitted amounts of reduction on the objective functions in each iteration. For the sake of simplicity suppose that all constraints have equal sensitivity, i.e., \(w_i = 1; i = 1, \ldots, 4 \). Next, we have to determine the acceptable amount of reduction on the objectives \(z_1 \) and \(z_2 \).

For this example, suppose DM specifies 2 and 3 for \(a_1 \) and \(a_2 \), respectively. The optimal value for \(\delta \) can be determined as the following,

\[
C_1 = (1,6) \Rightarrow |C_1| = \sqrt{1^2 + 6^2} = \sqrt{37}
\]

\[
C_2 = (5,2) \Rightarrow |C_2| = \sqrt{5^2 + 2^2} = \sqrt{29}
\]

\[
\cos \theta_{i_1} = \frac{C_{i_1}C_{i_2}}{|C_{i_1}| \cdot |C_{i_2}|} = \frac{(1,6)(5,2)}{\sqrt{37}\sqrt{29}} = 0.52
\]

\[
\sin \theta_{i_1} = \sqrt{1 - 0.52^2} = 0.85
\]

\[
\delta = \min \left[\frac{a_i}{|C_i| \sin \theta_{i_1}}; \frac{a_i}{|C_i| \sin \theta_{i_2}} \right]
= \min \left[\frac{2}{\sqrt{37}(0.85)}; \frac{3}{\sqrt{29}(0.85)} \right] = 0.38
\]

Then, we must find \(z_1^* \) and \(z_2^* \). Solving two distinct LP problems with consideration of \(z_1 \) and \(z_2 \) yields \((x_1^*, x_2^*) = (1.955, 49) \) with \(z_1^* = 3486 \) and \((x_1, x_2) = (6.50, 147) \) with \(z_2^* = 35.43 \), respectively.

In the next step, we obtain the utopian point in which both objectives are satisfied at least with their optimal values, while we reach to a common point. Hence, we have,

\[
M inD = d_1 + d_2 + d_3 + d_4 + 1000(d_5 + d_6)
\]

\[
ST .
\]

\[
\begin{align*}
-x_1 + 4x_2 &\leq 20 + d_1 \\
7x_1 + 9x_2 &\leq 63 + d_2 \\
22x_1 + 15x_2 &\leq 165 + d_3 \\
x_1 &\leq 6.5 + d_4 \\
x_1 + 6x_2 &\geq 34.86 \\
5x_1 + 2x_2 &\geq 35.43 \\
x_1 &\geq -d_5 \\
x_2 &\geq -d_6 \\
x_1, x_2 : free \ in \ sign \\
d_i &\geq 0; i = 1, \ldots, 6
\end{align*}
\] (28)

The optimal solution for (28) is \((x_1^*, x_2^*) = (5.10, 4.96) \) with \((z_1^*, z_2^*) = (34.86, 35.43) \) and \(D^* = 39.02 \). In the next step, the DM is asked to select the objective which has the least desirability for him. Suppose in the first
interaction the DM adopts z_2. Therefore, we must solve the following problem,

$$
Min D = d_1 + d_2 + d_3 + d_4 + 1000(d_5 + d_6)
$$

$$
ST.
$$

$$
x_1 + 4x_2 \leq 20 + d_1
$$

$$
7x_1 + 9x_2 \leq 63 + d_2
$$

$$
22x_1 + 15x_2 \leq 165 + d_3
$$

$$
x_1 \leq 6.5 + d_4
$$

$$
x_i \geq -d_5
$$

$$
x_i \geq -d_6
$$

$$
5x_1 + 2x_2 \geq 35.43
$$

$$
\sqrt{(x_1 - 5.10)^2 + (x_2 - 4.96)^2} = 0.38
$$

$$
x_1, x_2: free \ in \ sign
$$

$$
d_i \geq 0; i = 1, ..., 6
$$

(29)

The optimal solution for (29) is $(x_1, x_2) = (5.24, 4.61)$ with $(z_1, z_2) = (32.89, 35.43)$ and $D = 34.65$. Table 1 summarizes the results of implementation of the proposed algorithm during the next iterations.

Tab. 1. The detailed information for implementation of the proposed method for example 1

<table>
<thead>
<tr>
<th>Iter.</th>
<th>Objec.</th>
<th>x_1</th>
<th>x_2</th>
<th>D</th>
<th>z_1</th>
<th>z_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>max z_1</td>
<td>1.95</td>
<td>5.49</td>
<td>0</td>
<td>34.86</td>
<td>20.73</td>
</tr>
<tr>
<td>0</td>
<td>max z_2</td>
<td>6.5</td>
<td>1.47</td>
<td>0</td>
<td>15.32</td>
<td>35.43</td>
</tr>
<tr>
<td>0</td>
<td>Utopian</td>
<td>5.1</td>
<td>4.96</td>
<td>39.02</td>
<td>34.86</td>
<td>35.43</td>
</tr>
<tr>
<td>1</td>
<td>Hold z_2</td>
<td>5.24</td>
<td>4.61</td>
<td>34.65</td>
<td>32.89</td>
<td>35.43</td>
</tr>
<tr>
<td>2</td>
<td>Hold z_2</td>
<td>5.38</td>
<td>4.25</td>
<td>30.27</td>
<td>30.88</td>
<td>35.43</td>
</tr>
<tr>
<td>3</td>
<td>Hold z_1</td>
<td>5.01</td>
<td>4.32</td>
<td>20.99</td>
<td>30.88</td>
<td>33.69</td>
</tr>
<tr>
<td>4</td>
<td>Hold z_2</td>
<td>5.17</td>
<td>3.91</td>
<td>15.87</td>
<td>28.63</td>
<td>33.69</td>
</tr>
<tr>
<td>5</td>
<td>Hold z_1</td>
<td>4.86</td>
<td>4.37</td>
<td>6.5</td>
<td>28.63</td>
<td>31.94</td>
</tr>
<tr>
<td>6</td>
<td>Hold z_1</td>
<td>4.42</td>
<td>4.04</td>
<td>4.28</td>
<td>28.63</td>
<td>30.18</td>
</tr>
<tr>
<td>7</td>
<td>Hold z_1</td>
<td>4.04</td>
<td>4.1</td>
<td>2.14</td>
<td>28.63</td>
<td>28.38</td>
</tr>
<tr>
<td>8</td>
<td>Hold z_2</td>
<td>4.18</td>
<td>3.75</td>
<td>0</td>
<td>26.65</td>
<td>28.38</td>
</tr>
<tr>
<td>9</td>
<td>min z_2</td>
<td>4.17</td>
<td>3.75</td>
<td>0</td>
<td>26.69</td>
<td>28.38</td>
</tr>
<tr>
<td>10</td>
<td>max z_1</td>
<td>4.17</td>
<td>3.75</td>
<td>0</td>
<td>26.69</td>
<td>28.38</td>
</tr>
<tr>
<td>11</td>
<td>max z_2</td>
<td>4.17</td>
<td>3.75</td>
<td>0</td>
<td>26.69</td>
<td>28.38</td>
</tr>
</tbody>
</table>

As one can observe, we have reached to the feasible region after 8 iterations. The final step by which we reach to the feasible region is from $(x_1, x_2) = (4.04, 4.10)$ to $(x_1, x_2) = (4.18, 3.75)$ with feasible amounts $(z_1, z_2) = (26.65, 28.38)$. So, in order to reach to the feasible region by a smaller step we solve,

$$
Max z_1 = x_1 + 6x_2
$$

$$
ST.
$$

$$
\sqrt{(x_1 - 4.17)^2 + (x_2 - 3.75)^2} \leq 0.38
$$

$$
x_1 + 6x_2 \geq 26.69
$$

$$
-x_1 + 4x_2 \leq 20
$$

$$
7x_1 + 9x_2 \leq 63
$$

$$
22x_1 + 15x_2 \leq 165
$$

$$
x_1 \leq 6.5
$$

$$
x_j \geq 0; j = 1, 2
$$

(30)

Problem (30) leads to $(x_1, x_2) = (4.17, 3.75)$, with $(z_1, z_2) = (26.69, 28.38)$ and $\delta = 0.37$, which is the first feasible point on the boundary of the feasible region. Then, the DM is asked to determine the objective function which has the least desirability. Suppose he adopts z_1, so we solve,

$$
Max z_2 = x_1 + 6x_2
$$

$$
ST.
$$

$$
\sqrt{(x_1 - 4.17)^2 + (x_2 - 3.75)^2} \leq 0.38
$$

$$
x_1 + 6x_2 \geq 26.69
$$

$$
-x_1 + 4x_2 \leq 20
$$

$$
7x_1 + 9x_2 \leq 63
$$

$$
22x_1 + 15x_2 \leq 165
$$

$$
x_1 \leq 6.5
$$

$$
x_j \geq 0; j = 1, 2
$$

(31)

Problem (31) leads to $(x_1, x_2) = (4.17, 3.75)$ with $(z_1, z_2) = (26.69, 28.38)$. As one can see, z_1 cannot be improved by moving from $(x_1, x_2) = (4.17, 3.75)$. So, we have $S = \{2\}$ and z_2 is chosen to get improved. We solve,

$$
Max z_2 = 5x_1 + 2x_2
$$

$$
ST.
$$

$$
\sqrt{(x_1 - 4.17)^2 + (x_2 - 3.75)^2} \leq 0.38
$$

$$
x_1 + 6x_2 \geq 26.69
$$

$$
-x_1 + 4x_2 \leq 20
$$

$$
7x_1 + 9x_2 \leq 63
$$

$$
22x_1 + 15x_2 \leq 165
$$

$$
x_1 \leq 6.5
$$

$$
x_j \geq 0; j = 1, 2
$$

(32)

Problem (32) leads to $(x_1, x_2) = (4.17, 3.75)$ with $(z_1, z_2) = (26.69, 28.38)$. As one can see, z_2 cannot be improved by moving from $(x_1, x_2) = (4.17, 3.75)$. So, $S = \phi$ and $(x_1, x_2) = (4.17, 3.75)$ with $(z_1, z_2) = (26.69, 28.38)$ is the final efficient feasible solution.
4.2. Example 2

Consider the following MOLP problem with three objective functions,
\[
\begin{align*}
\text{Max } z_1 &= 10x_1 + 80x_2 + 25x_3 + 16x_4 \\
\text{Max } z_2 &= 6x_1 + 7x_2 + 25x_3 + 8x_4 \\
\text{Max } z_3 &= 8x_1 - 5x_2 + 12x_3 + 4x_4 \\
\end{align*}
\]
\[ST .
\]
\[\begin{align*}
-6x_1 + 7x_2 + 5x_3 + 3x_4 &\leq 142 \\
2x_1 + 7x_2 + 25x_3 + 9x_4 &\leq 320 \\
20x_1 + 13x_2 + 40x_3 + 16x_4 &\leq 800 \\
3x_1 - 10x_2 + x_3 - 24x_4 &\leq 15 \\
16x_1 + 5x_2 - 3x_3 + 80x_4 &\geq 228 \\
\end{align*}
\]
x_1, ..., x_4 \geq 0

Suppose that the values 12, 5, 45, 2, and 6 are specified by the DM for w_1, w_2, w_3, and w_4, respectively and we consider w^* = 100. Also, 300, 50, and 30 are determined as the acceptable amount of reduction for z_2 and z_3. The optimal value for \(\delta \) is determined as follows,
\[C_i = (10,80,25,15) \Rightarrow C_i = 7350 \]
\[C_i = (6,7,25,8) \Rightarrow C_i = 774 \]
\[C_i = (8,-5,12,4) \Rightarrow C_i = 249 \]
\[
\begin{align*}
\cos \theta_{i1} &= \frac{C_i . C_1}{|C_1| \cdot |C_i|} = \frac{(10,80,25,15) \cdot (6,7,25,8)}{\sqrt{7350} \cdot \sqrt{774}} = 0.57 \\
\Rightarrow \sin \theta_{i1} &= \sqrt{1 - (0.57)^2} = 0.82 \\
\cos \theta_{i2} &= \frac{C_i . C_2}{|C_2| \cdot |C_i|} = \frac{(10,80,25,15) \cdot (8,-5,12,4)}{\sqrt{7350} \cdot \sqrt{249}} = 0.03 \\
\Rightarrow \sin \theta_{i2} &= \sqrt{1 - (0.03)^2} = 1 \\
\cos \theta_{i3} &= \frac{C_i . C_3}{|C_3| \cdot |C_i|} = \frac{(6,7,25,8) \cdot (8,-5,12,4)}{\sqrt{774} \cdot \sqrt{249}} = 0.79 \\
\Rightarrow \sin \theta_{i3} &= \sqrt{1 - (0.79)^2} = 0.62 \\
\end{align*}
\]
\[
\delta = \min \left\{ \frac{a_1}{|C_1| \cdot \sin \theta_{i1}}, \frac{a_2}{|C_1| \cdot \sin \theta_{i2}}, \frac{a_3}{|C_1| \cdot \sin \theta_{i3}} \right\} \\
= \min \{4.27, 3.50, 2.19, 2.90, 1.90, 3.07\} = 1.90
\]

Now, \(z_1^*, z_2^*, \) and \(z_3^* \) must be found. Solving three LP problems with consideration of \(z_1, z_2, \) and \(z_3 \) separately yields
\[(x^*_1, x^*_2, x^*_3, x^*_4) = (17.22, 35.05, 0.00) \text{ with } z_1^* = 2975.87, \]
\[(x^*_1, x^*_2, x^*_3, x^*_4) = (16664.52, 1020.00) \text{ with } z_2^* = 386.64, \text{ and } \]
\[(x^*_1, x^*_2, x^*_3, x^*_4) = (36.82, 0.0, 3.98) \text{ with } z_3^* = 310.45, \text{ respectively.} \]

Then, we obtain the utopian point in which three objectives are satisfied at least with their optimal values while we reach to a common point. Therefore, we have,
\[
M in D = 12d_1 + 5d_2 + 45d_3 + 2d_4 + 6d_5 \\
+ 1000(d_6 + d_7 + d_8 + d_9)
\]
\[ST .
\]
\[
\begin{align*}
-6x_1 + 7x_2 + 5x_3 + 3x_4 &\leq 142 \\
2x_1 + 7x_2 + 25x_3 + 9x_4 &\leq 320 \\
20x_1 + 13x_2 + 40x_3 + 16x_4 &\leq 800 \\
3x_1 - 10x_2 + x_3 - 24x_4 &\leq 15 \\
16x_1 + 5x_2 - 3x_3 + 80x_4 &\geq 228 - d_9 \\
10x_1 + 80x_3 + 25x_5 + 16x_4 &\geq 2975.87 \\
6x_1 + 7x_2 + 25x_3 + 16x_4 &\geq 386.64 \\
8x_1 - 5x_2 + 12x_3 + 4x_4 &\geq 310.45 \\
\end{align*}
\]
x_1, ..., x_4 \geq 0

The optimal solution is \((x^*_1, x^*_2, x^*_3, x^*_4) = (57.56, 30.00, 0.00) \) with \((z^*_1, z^*_2, z^*_3) = (2975.87, 386.64, 310.45) \) and \(D^* = 333893 \). In the next step, the DM is asked to select the objective which has the least desirability for him. Since the constraint associated with \(z_2 \) is not active, the DM is allowed to select one of the objectives \(z_1 \) or \(z_3 \) to keep its value. Suppose in the first iteration the DM adopts \(z_3 \). Therefore, the following problem should be solved,
\[
\begin{align*}
\text{Min } D &= 12d_1 + 5d_2 + 45d_3 + 2d_4 + 6d_5 \\
+ 1000(d_6 + d_7 + d_8 + d_9)
\end{align*}
\]
\[ST .
\]
\[
\begin{align*}
-6x_1 + 7x_2 + 5x_3 + 3x_4 &\leq 142 + d_1 \\
2x_1 + 7x_2 + 25x_3 + 9x_4 &\leq 320 + d_2 \\
20x_1 + 13x_2 + 40x_3 + 16x_4 &\leq 800 + d_3 \\
3x_1 - 10x_2 + x_3 - 24x_4 &\leq 15 + d_9 \\
16x_1 + 5x_2 - 3x_3 + 80x_4 &\geq 228 - d_4 \\
10x_1 + 80x_3 + 25x_5 + 16x_4 &\geq 2975.87 \\
6x_1 + 7x_2 + 25x_3 + 16x_4 &\geq 386.64 \\
8x_1 - 5x_2 + 12x_3 + 4x_4 &\geq 310.45 \\
\end{align*}
\]
x_1, ..., x_4 \geq 0

The optimal solution is \((x^*_1, x^*_2, x^*_3, x^*_4) = (57.56, 30.00, 0.00) \) with \((z^*_1, z^*_2, z^*_3) = (2975.87, 386.64, 310.45) \) respectively.
The optimal solution for (35) is $(x_1, x_2, x_3, x_4) = (567/3239, 0.013)$ with $(z_1, z_2, z_3) = (282655342231043)$ and $D = 31484.82$.

Table 2 summarizes the results of implementation of the proposed algorithm for example 2. Note that the constraint associated with z_2 is not active till iteration 8. Therefore, he is allowed to choose z_2 as the objective whose desirability is the least amount from iteration 8.

According to Table 2, we reach to the feasible region in iteration 22. So, solving the following problem helps us to attain the boundary of the feasible region.

$$
\begin{align*}
\text{MinD} &= \sqrt{(x_1 - 32.26)^2 + (x_2 - 12.53)^2 + (x_3 + 0.2)^2 + (x_4 - 0)^2} \\
&= \sqrt{(x_1 - 32.26)^2 + (x_2 - 12.53)^2} + (x_3 + 0.2)^2 + (x_4 - 0)^2 \\
&= ST \\
&= 10x_1 + 80x_2 + 25x_3 + 16x_4 \geq 1230.02 \\
&= 6x_1 + 7x_2 + 25x_3 + 8x_4 \geq 274.99 \\
&= 8x_1 - 5x_2 + 12x_3 + 4x_4 \geq 182.73 \\
&= -6x_1 + 7x_2 + 5x_3 + 3x_4 \leq 142 \\
&= 2x_1 + 7x_2 + 25x_3 + 9x_4 \leq 320 \\
&= 20x_1 + 13x_2 + 40x_3 + 16x_4 \leq 800 \\
&= 3x_1 - 10x_2 + x_3 - 24x_4 \leq 15 \\
&= 16x_1 + 5x_2 - 2x_3 + 80x_4 \geq 228 \\
&= x_j \geq 0, j = 1, \ldots, 4 \\
\end{align*}
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
Iter. & Objec. & x_1 & x_2 & x_3 & x_4 & ST & z_1 & z_2 & z_3 \\
\hline
0 & max z_1 & 17.22 & 35.05 & 0 & 0 & 0 & 2976.2 & 348.67 & -37.49 \\
0 & max z_2 & 16.66 & 4.52 & 10.2 & 0 & 0 & 783.2 & 386.6 & 233.08 \\
0 & max z_3 & 36.82 & 0 & 0 & 3.98 & 0 & 431.88 & 252.76 & 310.48 \\
0 & Utopian & 57.56 & 30 & 0 & 0 & 0 & 33380.43 & 2975.6 & 555.36 \\
1 & hold z_1 & 56.74 & 28.29 & -0.17 & 0 & 0 & 31484.82 & 2826.35 & 534.22 \\
2 & hold z_1 & 55.92 & 26.58 & -0.33 & 0 & 0 & 29613.44 & 2677.35 & 513.33 \\
3 & hold z_1 & 54.4 & 27.09 & -1.35 & 0 & 0 & 27726.82 & 2677.35 & 482.28 \\
4 & hold z_1 & 53.58 & 25.38 & -1.52 & 0 & 0 & 25860.25 & 2528.2 & 461.14 \\
5 & hold z_1 & 52.76 & 23.67 & -1.68 & 0 & 0 & 23988.88 & 2379.2 & 440.25 \\
6 & hold z_1 & 51.94 & 21.96 & -1.85 & 0 & 0 & 22118.36 & 2229.95 & 419.11 \\
7 & hold z_1 & 51.12 & 20.25 & -2.02 & 0 & 0 & 20244.01 & 2080.7 & 397.97 \\
8 & hold z_1 & 50.3 & 18.56 & -2.23 & 0 & 0 & 18351.77 & 2080.7 & 366.92 \\
9 & hold z_1 & 49.6 & 16.87 & -2.46 & 0 & 0 & 16465.06 & 2080.7 & 335.87 \\
10 & hold z_1 & 47.96 & 15.16 & -2.61 & 0 & 0 & 14599.55 & 1931.65 & 314.73 \\
11 & hold z_1 & 46.44 & 13.56 & -3.39 & 0 & 0 & 12728.18 & 1782.65 & 293.84 \\
12 & hold z_1 & 45.62 & 12.95 & -3.99 & 0 & 0 & 10857.66 & 1633.4 & 272.77 \\
13 & hold z_1 & 44.1 & 12.35 & -4.73 & 0 & 0 & 8965.42 & 1633.4 & 241.65 \\
14 & hold z_1 & 42.58 & 11.76 & -4.83 & 0 & 0 & 7078.71 & 1633.4 & 210.6 \\
15 & hold z_1 & 41.12 & 11.21 & -4.93 & 0 & 0 & 5830.92 & 1562.25 & 175.69 \\
16 & hold z_1 & 39.75 & 10.71 & -5.03 & 0 & 0 & 4855.56 & 1501.6 & 175.69 \\
17 & hold z_1 & 38.38 & 10.21 & -5.23 & 0 & 0 & 3982.43 & 1441.2 & 153.69 \\
18 & hold z_1 & 37.01 & 9.71 & -5.43 & 0 & 0 & 2906.67 & 1380.55 & 131.8 \\
19 & hold z_1 & 35.64 & 9.21 & -5.63 & 0 & 0 & 1933.53 & 1320.15 & 109.81 \\
20 & hold z_1 & 33.95 & 8.71 & -5.83 & 0 & 0 & 1066.54 & 1320.15 & 87.81 \\
21 & hold z_1 & 32.26 & 8.21 & -6.03 & 0 & 0 & 203.27 & 1320.15 & 65.81 \\
22 & hold z_1 & 30.5 & 7.71 & -6.24 & 0 & 0 & 0 & 1320.15 & 43.81 \\
23 & min z_1 & 31.86 & 12.52 & 0 & 0 & 0 & 1320.15 & 278.8 & 192.28 \\
24 & max z_2 & 31.86 & 12.52 & 0 & 0 & 0 & 1320.15 & 278.8 & 192.28 \\
25 & max z_2 & 31.86 & 12.52 & 0 & 0 & 0 & 1320.15 & 278.8 & 192.28 \\
26 & max z_3 & 31.86 & 12.52 & 0 & 0 & 0 & 1320.15 & 278.8 & 192.28 \\
\hline
\end{tabular}
The optimal solution for (36) is \((x_i, y_i, z_i) = (3186, 2520, 0)\) with \((z_i, z_j, z_k) = (1320, 2788, 19228)\) and \(\delta = 0.44\). Suppose the DM adopts \(z_i\) as the objective to get improved. Hence,
\[
\text{Max} z = 10x + 80y + 25z + 16x_i \\
\begin{align*}
6x_i + 7x + 25z + 8x &\geq 27499 \\
8x_i - 5x_i + 12x_i + 4x_i &\geq 18273 \\
-6x_i + 7x + 5x + 3x_i &\leq 142 \\
2x_i + 7x_i + 25z_i + 9x_i &\leq 320 \\
20x_i + 13x_i + 40z_i + 16x_i &\leq 800 \\
3x_i - 10x_i + x_i + 24x_i &\leq 15 \\
16x_i + 5x_i - 2x_i + 80z_i &\geq 228 \\
x_i &\geq 0, j = 1, \ldots, 4
\end{align*}
\]
(37)
The optimal solution for (37) is \((x_i, y_i, z_i, z_j) = (3186, 2520, 0)\) with \((z_i, z_j, z_k) = (1320, 2788, 19228)\). Since \(z_i\) does not change, we have \(S = [2, 3]\). Then, \(z_j\) is adopted by the DM to get improved, which leads to,
\[
\text{Max} z = 6x_i + 7x_i + 25z_i + 8x_i \\
\begin{align*}
\sqrt{(x_i - 3226)^2 + (x_i - 1253)^2 + (x_i + 0.2)^2 + (x_i - 0)^2} &\leq 1.9 \\
10x_i + 80x_i + 25x_i + 16x_i &\geq 13202 \\
8x_i - 5x_i + 12x_i + 4x_i &\geq 18273 \\
-6x_i + 7x_i + 5x_i + 3x_i &\leq 142 \\
2x_i + 7x_i + 25z_i + 9x_i &\leq 320 \\
20x_i + 13x_i + 40z_i + 16x_i &\leq 800 \\
3x_i - 10x_i + x_i + 24x_i &\leq 15 \\
16x_i + 5x_i - 2x_i + 80z_i &\geq 228 \\
x_i &\geq 0, j = 1, \ldots, 4
\end{align*}
\]
(38)
The optimal solution for (38) is \((x_i, y_i, z_i, z_j) = (3186, 2520, 0)\) with \((z_i, z_j, z_k) = (1320, 2788, 19228)\). Since similar to \(z_i\) and \(z_j\), the amount of \(z_k\) remains unchanged, we have \(S = \phi\). Therefore, the final efficient feasible solution is \((x_i, y_i, z_i, z_j) = (3186, 2520, 0)\) with \((z_i, z_j, z_k) = (1320, 2788, 19228)\).

5. Conclusion

We have proposed a new interactive algorithm to solve MOLP problems in which we need some initial information about DM’s preferences. Unlike the majority of interactive methods, we have started from the utopian point, where it’s usually infeasible, and have moved towards the feasible region and the efficient set. Based on the results of some proved lemmas, we have been able to specify the amount of steps towards the feasible region. Our method satisfies most of the characteristics that a good interactive method needs, such as simplicity of the nature of judgments for DM, having opportunity to compensate improper decisions in previous interactions, and handling his nonlinear utility. The implementation of the proposed method has been demonstrated by using two numerical examples.

References

