Can Biomarkers Improve Ability of NPI in Risk Prediction? A Decision Tree Model Analysis

Baneshi MR1,2, Warner P3, Anderson N3, Tovey S3, Edwards J3, Bartlett JMS4

Abstract

Background: The Nottingham Prognostic Index (NPI) is widely-used in the UK for risk stratification of breast cancer patients. This paper aims to evaluate the ability of this index to detect patients with sufficiently low risk of recurrence that they could be spared harsh treatments, and to construct an enhanced prognostic rule that integrates biomarkers with clinical variables to achieve better risk stratification.

Methods: We undertook review of published studies of outcomes in risk groups derived by applying NPI, and report estimated event-free rates extracted from papers found. Then we analysed biological and clinical variables for 401 ER+ patients, to develop a Tree-based Survival Model (TSM), for risk prediction, and estimated event-free rates by resulting risk-groups, Kaplan-Meier (K-M) curves corresponding to TSM and NPI were plotted.

Results: We concluded that NPI does not distinguish low risk patients with a sufficiently high event-free rate to make it likely clinicians would decide treatments with potential harmful side effects can be avoided in that group. On the other hand, in the decision tree constructed, utilising 3 biomarkers, nodal status and tumour size, the 4 risk groups were clearly diverged in terms of event-free rates.

Conclusion: There is considerable potential for improved prognostic modelling by incorporation of biological variables into risk prediction. Whilst low risk patients identified by our TSM model could potentially avoid systemic treatment, higher risk patients might require additional treatment, including chemotherapy or other adjuvant treatment options. However, the decision tree model needs to be validated in a larger clinical trial cohort.

Keywords: Breast neoplasm, Tissue microarray data, NPI, Tree-based survival methods, Missing data

Introduction

Cancer is one of the most major health problems worldwide. In UK, more than a quarter of a million new cancer cases are diagnosed per year. Breast carcinoma is the most prevalent malignancy, with one million newly diagnosed cases annually, comprising 18% of all female cancers [1]. Each year in UK, more than 44,000 women are diagnosed with breast cancer and 2400 die from it [2].

Management of patients suffering from cancer is guided using prognostic models. Prognostic models combine key patient characteristics (i.e. risk factors) to predict clinical outcomes such as recurrence of cancer. Such models are valuable tools for selection of treatment strategy and for providing a patient with information about her likely outcome[3]. They are also useful for investigating the contribution of variables to the disease course, and to inform design of future studies [3].

In the case of breast cancer, Nottingham Prognostic Index (NPI) was devised to estimate the risk of recurrence and to classify patients into risk groups [4]. To do so, multiple conventional prognostic candidate variables (9 variables in total) have been investigated by applying the Cox regression model to derive an index of risk of disease recurrence [4]. This model (NPI) uses information on 3 clinical variables (number of positive nodes, tumour grade, and tumour size) to stratify into 3 risk groups, and has been widely validated [5-7]. However, it has been commented that, for a prognostic model such as NPI to be clinically useful in practice, it should be
able to identify a subset of patients with a prognosis so good that it would be safe to forego the risks of adjuvant therapy with potential harmful side effects, such as chemotherapy [8]. Furthermore, it has been argued that NPI is not capable of identifying such a subgroup [7].

NPI calculates risk based on only the clinical presentation of the tumour, at biopsy, yet there is clear evidence that breast cancer is a heterogeneous disease which includes different subtypes [9]. As an example, Estrogen and Progesterone hormonal Receptors (ER and PR), present in nearly two thirds of breast cancer specimens, are associated with growth of cancer cells, and the HER2 gene controls growth, division, and the repair of cells (10). It has been found that estimated 6-yea Disease Free Survival (DFS) differed markedly between [ER+, PR+] and [ER-, PR-] cases (85% versus only 72%) [10]. However, recent developments in the field of cancer biology, have led to the development of Tissue Microarray Analysis (TMA), which enables measurement of many cancer tissue characteristics describing the underlying biology of breast cancers, and offering potential insights to likely disease course, and hence management of breast cancer patients.

TMA has been taken up by cancer researchers world-wide [11]. The tumour tissue is embedded in paraaffin, and then using a hollow needle 6 millimetre diameter, tissue cores are removed from the region of interest, a process similar to clinical biopsies. Tissue cores are inserted in a new paraaffin block and microtome used to cut sections for staining and/or microscopic examination. While these TMA variables could have the potential to enhance risk prediction, a challenge arises for prognostic modelling methods since TMA analysis results in many additional potential prognostic markers (i.e. biomarkers). Given the generally accepted requirement for at least 10 events per independent variable being tested, in order to develop a reliable Cox regression model [12], inclusion of TMA variables can substantially increase the size of cohort needed for regression modelling. However, as an alternative to traditional Cox regression model, Tree-based Survival Model (TSM) can be applied, since this place no limits on the number of variables included [13].

The aim of this paper is to review the ability of the NPI index to detect low risk patients and, using cohort data available for analysis. We also will integrate both clinical and biomarker (TMA) variables, through TSM analysis, so as to develop an enhanced prognostic model for breast cancer recurrence.

Material and Methods

Literature review of ability of NPI to identify ‘low risk’ patients

To evaluate the ability of NPI in risk stratification, in Oct 2008 using Pubmed data base, the word ‘Nottingham’ in the title of the paper was searched. References cited in papers which reported application of NPI, were also checked. Only papers which reported the application of the NPI to stratify patients into risk groups were considered. Papers cited by those papers selected were also checked. In the case of no report of event-free rates, if survival curves were presented, then figures were read off as accurately as possible from the plots.

Sample

A total of 401 Estrogen Receptor positive (ER+) women diagnosed during 1983 and 1999 at Glasgow Royal Infirmary formed our sample. Median follow-up time was 6.16 years and all patients received Tamoxifen for some of the follow-up time (median of 5 years). At the end of the follow-up there had been 112 recurrences. All patients were treated by surgery with curative intent and received Tamoxifen after surgery; 73 (18%) were aged under 50 years of age at diagnosis [14-16].

Variables and outcome

The main outcome of the study was Recurrence Free Survival (RFS). Data for a large number of tissue microarray variables (72 variables describing 41 protein biomarkers) and 3 clinical variables (nodal status, grade (Bloom and Richardson), and tumour size) were available. These 72 biomarkers belonged to RAS, Akt, PgR, MAPK, MTOR, BAD, and HER families [17]. Staining was analysed separately for membrane, cytoplasmic and nuclear localisation of biomarkers:

1. Membrane expression was analysed for: p118ER, p167ER, EGFr, HER2, phosphoHER2, HER3 (hn), HER4-ICD (intracellular domain), HER4 ECD (extracellular domain)
2. Cytoplasmic expression was analysed for: ER α, ER β, p118ER α, p167ER α, phosphoHER2, HER 3, HER4-ICD, HER 4 ECD, h RAS, n RAS, k RAS, RAF 1, p259-RAF 1, p338-RAF 1, r Kip, TES, AKT 1, AKT 2, AKT 3, panAKT, p473AKT, p308AKT, mTOR, phospho-m TOR, p389- p70S6k, Tace, Tacep, MAPK, phosphor MAPK, PTEN, Bcl2, Bax, Bad, p112-Bad, Bcl-xL
3. Nuclear expression was analysed for: ER α, ER β, Pg R, p118ER α, p167ER α, phosphoHER 2, HER 3, HER4-ICD, HER 4 ECD, hRAS, n RAS,
k RAS, RAF1, p259-RAF1, p338-RAF1, r Kip, TES, AKT1, pan AKT, p473 AKT, p308 AKT, MAP K, phosphor MAP K, PTEN, AIB1.

In addition the gene amplification and the copy number for HER2 and AIB1 and TUNEL analysis of apoptosis were analysed.

TSM analysis

Construction of TSM

TSM has no upper limit for number of variables included. TSM involves successive binary partitioning, to sub-classify subjects into a number of smaller groups (known as nodes), that are homogeneous with respect to recurrence rates. To start, the Log-Rank test is applied to every possible cut point for each prognostic variable, so as to select the split that ensures the greatest difference in recurrence rates between the two resulting subgroups (as judged by the lowest P-value, and highest Hazard Ratio (HR)) [18]. The process then proceeds in the same way on each of the two subgroups (each parent node is split into two subgroups known as child nodes), on these child nodes, and so on. Once a sub-group cannot be sub-divided further (that is, when all splits have Log-Rank p-value > 0.05 , or the only split with P value ≤ 0.05 has its cut-point in the outer 20% of the distribution for that biomarker in the entire original sample [18], or would yield a sub-subgroup with n <30), then partitioning ceases and the un-split subgroup is declared a terminal node. The whole iterative process of sub-division creates a tree structure.

Patients with missing data are not used in the initial TSM analysis, but once each node has been selected, patients with missing data on the variable used, are assigned to an appropriate node by means of the ‘surrogate variable’ approach. This involves re-applying the partitioning algorithm explained above to all values for all other variables to select the second best variable cut off to achieve that split. If the surrogate variable has a missing value for that patient, then the next potential surrogate variable is tried, and so on [13].

Refinement of tree

A systematic search across all possible values, to detect the optimal split, can lead to the selection of over-optimistic and hence unstable cut points, due to the multiple testing undertaken [19]. To tackle potential over fitting, branches with P-value exceeding 0.002 (corresponding to 0.05 if a single test had been applied [20]) were revoked (including all sub-branches) [21,22]. Furthermore, to avoid groups with small numbers of patients, no split at outer 20% of distribution of biomarkers was applied [18].

Amalgamation of groups with similar survival curve

Although TSM ensures that the two terminal nodes within a branch are significantly different, it remains possible that terminal subgroups from distinct branches might have very similar survival curves. In accordance with usual practice in TSM modelling, terminal nodes will comprise a minimum of 30 patients. However, the higher the number of patients in node, the more robust the estimated event-free rate is. Although it would be possible, to decide in advance to require a higher minimum number of patients per terminal node, this leads to risk of a tree with very few ‘branches’, and hence of missing of high order interactions, in particular when the sample size is low. Therefore, further examination is required to rationalise the number of terminal nodes (risk groups), by examining the survival curves and event-free rates in the terminal nodes, and also considering number of patients in each node. We plotted the Kaplan-Meier survival curves and estimated the actuarial 7-year RFS rates (see below) [23,24].

Assignment to NPI risk groups

The NPI risk scores are calculated as: NPI = 0.2 x Size (cm) + Nodal status + Grade where both nodal status and grade are scored as 1, 2 or 3. Tumour size was based on measurement of the mastectomy specimen. Histological grade (1 to 3) was determined based on criteria of Bloom and Richardson [25]. The Bloom-Richardson grading method is based on three features of invasive breast cancers: the percentage cancer composed of tubular structures, the rate of cell division, and the nuclear pleomorphism of tumor cells (nuclear grade, change in cell size and uniformity). Each of these 3 features is rated from 1 to 3. Summation of these scores, which give a total score that ranges from 3 to 9, is used to grade the tumours as follows:

- Grade 1 tumor (well-differentiated): scores 3 to 5
- Grade 2 tumor (moderately-differentiated): scores 6 to 7
- Grade 3 tumor (poorly-differentiated): scores 8 to 9

Lymph node involvement was determined based on biopsy of a lower axillary node, an apical axillary node, and a node from the internal mammary chain. Patients were staged into 3 groups in terms of lymph node findings:

- Stage 1: Tumour absent from all 3 nodes sampled
• Stage 2: Tumour in low axillary node only.
• Stage 3: Tumour in either of apical or internal mammary nodes.

In the data set used there was some missing data for clinical variables; altogether 58 patients had one or more missing values for clinical variables - 33 for nodal status, 11 for grade and 22 for tumour size.

In calculation of the NPI, Multivariable Imputations by Chained Equations (MICE) method [26,27] was applied to deal with missing data. The MICE method is a probability-based simulation technique which takes into account imputation uncertainty pertaining. This is an iterative process where missing data for a variable is estimated using its imputation model and then in turn these data are used in estimation of missing data for another variable. In accordance with the usual practice, we imputed 10 values for each missing value, and thus created 10 imputed data sets.

For each woman, an NPI risk score was calculated as above for each of the 10 imputed data sets, and her final NPI score was the average of these 10 risk scores. To create the risk groups, cut-offs were applied to final (average) NPI risk scores, so that patients with average score ≤ 3.4 and > 5.4 formed the lowest and highest risk groups respectively, and the remainder the intermediate risk group. In this way, every patient was categorised into one of the 3 risk groups.

Kaplan-Meier (K-M) curves for TSM and NPI risk groups
K-M survival curves were plotted and actuarial 5 and 7 year event-free rates years (with 67% and 40% follow-up data respectively) were calculated corresponding to TSM and NPI risk groupings. Being event free all the way to the end of 7th year depends on no event in any of the preceding years, and also none in the 7th year. In actuarial life-table procedure, the whole follow-up duration is split into one year intervals. If indicates the number of patients at risk just before the i-th year starts, and the number of events during the i-th year, then the probability of being event free up to and including 7th year is given by

$$ S (7) = \prod_{i=1}^{7} \left(1 - \frac{d_i}{n_i}\right) $$

Results

Review of event free survival by NPI risk group

Our literature review resulted in 470 papers; the majority of them were not relevant to breast cancer. Only 17 papers were relevant, but two studies split each of the three risk groups into two, thus dividing the patients into 6 risk groups [28, 29]. Results of these 2 studies could not be compared with other studies since different cut-offs were applied. Of the 15 papers included in the review, not all provided information on confidence interval of reported survival rates, detailed information about the number of patients and recurrences in risk groups, follow-up time, and estimated event-free rates.

A total of 15 papers reported short-term rates at 5 years (Table 1). Actuarial 5-year survival rate derived from original NPI was 88% [4]. In the literature, the estimated/ reported rate varied from 82% [30, 31] to 96% [32, 33]. In the case of 3 studies, breast cancer patients were all node negative, so none was assigned into the high risk group [30, 31, 34].

Focusing on longer-term survival rates (Table 2), in the largest studies, nearly 25000 and 10000 patients were recruited [7,35]. In both studies, estimated 10-year survival rate was about 80%. Some other studies reported a similar rate [6, 35-37].

The highest 10-year event-free rate in the low risk group was 88%, reported for a study recruiting only patients with small primary breast cancer [33]. However the same 10-year event-free rate (88 %) was reported in the longest follow-up study [38], and the event-free rate for the high-risk group in the latter study was also higher than most of the other studies.

The poorest 10-year survival rate in a low risk group was only 66% [39]. Sample size and duration of follow-up was not reported. Callagy et al. (40) reported an estimate only slightly better (73% versus 66%).

Two cohorts were analysed in which lowest-risk patients were defined as those with NPI ≤ 2.4 (not shown in the tables) [28,29]. The cohort with longer follow-up data gave 10-year survival rate of 88% [29]. The corresponding rate for the other cohort was 96% [28].

TSM and NPI Model

The tree constructed is given in Figure 1. Branching points are shown as rectangles, and numbers in square brackets are, respectively, number of patients at this branching point, and number who had recurrences. Terminal nodes are shown as ovals, with numbers as for branching points. For each split, the P-value reported corresponds to the Log-Rank P-value test. A total of 5 variables were used to construct the tree. The first two variables which best separated the patients were nodal status and tumour size.
Biological variables, Tunel, Prhiso, and cytoplasmic KRAS were also required.

The absolute difference between estimated 7-year RFS rates of nodes 3 and 4 was 20% (Table 3). Comparing nodes 1 with 2, and 5 with 6 (Table 3), rates within each pair were fairly similar (difference 6% in each comparison). Furthermore, the number of patients comprising nodes 1, 2, 5 and 6 were smaller than for nodes 3 and 4. Therefore, to ensure more robust estimates nodes 1 and 2 were combined to create a single lowest risk group. In addition, nodes 5 and 6 were grouped to create a highest risk groups.

In the lowest risk group identified by TSM (nodes 1 and 2 combined), there were only 3 recurrences out of 84 patients. This gave a 7-year RFS of 96% (95% CI: 92% to 100%). Figure 2 presents K-M curves showing survival experience for NPI risk groups and for risk groups derived by applying TSM model. While in NPI the three groups are fairly well diverged, the survival curve for the lowest risk group (top curve) continues to decline across the entire follow up period. In contrast, for the four TSM risk groups, the lowest risk group (top curve) shows very few events and no event at all after about 3 years follow-up.

Discussion

In our sample, actuarial 5 and 10-year RFS rates in the lowest NPI risk group were 94% and 79% respectively, although it should be noted that sparse follow up to the 10th year (about 11%), means that our estimated 10-year rate might not be robust. The literature review of published studies (Tables 1 and 2) showed that while the median of the short-term (5 year) recurrence free rate of the lowest-risk group defined by NPI was 90%, a gentle decreasing trend was seen in K-M curves after fifth year of follow up to a median 10-year event-free rate of 80% (ranging from 66% [39] to 88%) [33,38] Although patients were stratified by the same prognostic index (i.e. NPI), marked differences were seen between estimations. However, comparison of results is not straightforward since different patient subgroups received a variety of treatment regimes. In addition, the sizes of studies varied hugely (from 82 to more than 25000). However, our aim was neither to compare the results nor to do a quality assessment of estimations. We simply aimed to perform a narrative review, across the spectrum of study types in which NPI has been utilised, to investigate Baislev and co-authors’ statement that NPI is not able to identify patients with very low risk [7].

The second aim of our research was to develop a TSM prognostic model for RFS combining clinical and biomarker variables, that could identify a clearly low risk group, that might be spared adjuvant treatments. Prior to the start of this research, this issue was discussed with the clinical collaborators of the study and it was proposed that a minimum 10-year RFS of 95% would define such a group. Elsewhere it has been commented that a prognostic group with a 15-year survival of 94% could be considered ‘a group of patients potentially cured by locoregional treatment alone’ [33]. Our literature review showed that the best published estimate using standard NPI is 88% 10-year RFS in the lowest risk group. Our review therefore showed that standard NPI is not capable of identifying a subgroup of patients with sufficiently low risk of recurrence who do not require harsh treatments [7].

With regard to the TSM model developed, the lowest risk group of the Glasgow data set had both 5 and 7-year RFS of 96% (95% CI: 92%, 100%). In contrast, 7-year rates for NPI were 89% (95% CI: 83%, 95%). However, an adaptation of NPI, applying an additional cut-off at ≤2.4, has identified a ‘lowest risk’ group with a 15-year survival of 94% [33]. However, this is essentially all those with nodal status, grade score of 1 and tumour size of ≤ 2 cm, and only a small proportion of patients are likely to meet these criteria. In the Glasgow data set this subgroup comprises only 43 patients (11%), who had an estimated 7-year, RFS of 95% (95% CI: 89%, 100%).

Although the lowest risk group detected by TSM (n=84) had higher (better) 7-year RFS rate than the lowest risk group by NPI (n=133), it should be noted that for the same data set, event-free rates estimated for patients in the "lowest risk group", to a great extent depend on decisions as to the size of that risk group. The 84 patients with lowest NPI scores would have better RFS than the larger subgroup of 133 classified to as its 'low risk' group (by its pre-defined classification rule). So we are not comparing like with like. An alternative strategy for improving low risk group stratification in NPI would be to add a further cut off to is classification, and thus create an even lower risk NPI group, as has been done [33], or to use NPI scores to create a new grouping with more than 3 groups [41].

The main weaknesses of the TSM approach are multiple testing and potential over-fitting [19]. It has been discussed that decision trees are sensitive to small changes in the sample [42]. Sensitivity (of results) to sample is a problem in all modelling approaches (including regression methods).
Table 1. Comparison of 5-year event-free rate across studies in the subset of patients identifies as being low risk by NPI

<table>
<thead>
<tr>
<th>Study</th>
<th>Ref. number</th>
<th>Cohort size</th>
<th>Treatment Given</th>
<th>Follow-up (years)</th>
<th>Lowest-risk group (%)</th>
<th>Intermediate-risk group (%)</th>
<th>Highest-risk group (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haybittle (1982)</td>
<td>(4)</td>
<td>387</td>
<td>Simple mastectomy + triple node biopsy</td>
<td>1-6</td>
<td>64 (21)</td>
<td>169 (57)</td>
<td>69 (22)</td>
</tr>
<tr>
<td>Todd (1987)</td>
<td>(5)</td>
<td>387+320</td>
<td>Simple mastectomy + triple node biopsy</td>
<td>6-11.5</td>
<td>192 (27)</td>
<td>381 (54)</td>
<td>134 (19)</td>
</tr>
<tr>
<td>Okugawa (2005)</td>
<td>(32)</td>
<td>311</td>
<td>ER+ patients treated with adjuvant systematic chemotherapy consisting of cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) for 5 months ER+ treated with tamoxifen for 2 years.</td>
<td>1.7-6.5</td>
<td>97 (31)</td>
<td>142 (46)</td>
<td>72 (23)</td>
</tr>
<tr>
<td>Sauerbrei (1997)</td>
<td>(30)</td>
<td>603</td>
<td>Modified radical mastectomy + en bloc axillary dissection with ≥ 6 identifiable lymph nodes in the specimen</td>
<td>5</td>
<td>163 (27)</td>
<td>440 (73)</td>
<td>70</td>
</tr>
<tr>
<td>Coradini (2001)</td>
<td>(31)</td>
<td>226</td>
<td>Radical or conservative surgery + radiotherapy, and complete axillary dissection until relapse</td>
<td>0.3-8.17 Median 6.25</td>
<td>82*</td>
<td>72*</td>
<td>No case</td>
</tr>
<tr>
<td>Ring (2006)</td>
<td>(34)</td>
<td>195</td>
<td>Only ER+ lymph node – patients were analysed. Treatments applied not given</td>
<td></td>
<td>90</td>
<td>90</td>
<td>No case</td>
</tr>
</tbody>
</table>

1. These 387 patients were those used to devise the NPI index
* inexact read off from graph
Table 1 (continued). Comparison of 5-year event-free rate across studies in the subset of patients identifies as being low risk by NPI

<table>
<thead>
<tr>
<th>Study</th>
<th>Ref. number</th>
<th>Cohort size</th>
<th>Treatment given</th>
<th>Follow-up (years)</th>
<th>Lowest-risk group (L)</th>
<th>Intermediate-risk group (I)</th>
<th>Highest-risk group (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number (% of cases)</td>
<td>Event-free rate (%)</td>
<td>Number (% of cases)</td>
</tr>
<tr>
<td>Balslev</td>
<td>(7)</td>
<td>91.49</td>
<td>94.8% simple mastectomy 5.2% tumorectomy + radiotherapy</td>
<td>2.3-13.9 median 7.1</td>
<td>2494 (27)</td>
<td>92</td>
<td>5245 (57)</td>
</tr>
<tr>
<td>Kollas</td>
<td>(33)</td>
<td>2684</td>
<td>69.1% mastectomy or subcutaneous mastectomy 30.9% lumpectomy (more details in the paper)</td>
<td></td>
<td>894 (33)</td>
<td>96*</td>
<td>1374 (52)</td>
</tr>
<tr>
<td>Sidoni</td>
<td>(36)</td>
<td>82</td>
<td>Not reported</td>
<td>Min 5</td>
<td>27 (33)</td>
<td>92*</td>
<td>39 (48)</td>
</tr>
<tr>
<td>Eden</td>
<td>(37)</td>
<td>97†</td>
<td>5 patients adjuvant systemic therapy (no more information was provided)</td>
<td></td>
<td></td>
<td>83*</td>
<td></td>
</tr>
<tr>
<td>Collagey</td>
<td>(40)</td>
<td>557</td>
<td>Chemotherapy</td>
<td>0.4-39.4 Median 8.7</td>
<td>34 (6)</td>
<td>83*</td>
<td>236 (42)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Node negative</td>
<td>Node positive</td>
<td>Median 9.5</td>
</tr>
<tr>
<td>Lundin</td>
<td>(35)</td>
<td></td>
<td></td>
<td></td>
<td>Adjuvant therapy</td>
<td>8.8%</td>
<td>92.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chemotherapy</td>
<td>6.2%</td>
<td>52.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hormone therapy</td>
<td>2.4%</td>
<td>36.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unknown</td>
<td>0.2%</td>
<td>3.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2036 (FinProgn series)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25752 (SEER series)</td>
<td>Approximately 66% adjuvant therapy, 18% chemotherapy, 35% hormone therapy, and 9% both</td>
<td>11-19</td>
</tr>
<tr>
<td>D’Eredita</td>
<td>(38)</td>
<td>402</td>
<td>Surgery + axillary clearance (details provided in the paper)</td>
<td></td>
<td>470 (29)</td>
<td>92*</td>
<td>879 (54)</td>
</tr>
<tr>
<td>Galea</td>
<td>(1992)</td>
<td>1629</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Eden et al. studied 46 patients who developed distant metastasis within 5 years and 51 patients being distant metastasis-free for ≥ 5 years
3. Galea et al. reported 15-year event-free rates
* inexact read off from graph
<table>
<thead>
<tr>
<th>Study</th>
<th>Ref. number</th>
<th>Cohort size</th>
<th>Treatment given</th>
<th>Follow-up (years)</th>
<th>Lowest-risk group [L]</th>
<th>Intermediate-risk group [I]</th>
<th>Highest-risk group [H]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown (1993)</td>
<td>(39)</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balslev (1994)</td>
<td>(7)</td>
<td>91.49</td>
<td>94.8% simple mastectomy, 5.2% tumorectomy + radiotherapy</td>
<td>2.3-13.9 median 7.1</td>
<td>2494 (27) 79</td>
<td>5245 (57) 56</td>
<td>1410 (16) 25</td>
</tr>
<tr>
<td>Kollas (1999)</td>
<td>(33)</td>
<td>2684</td>
<td>69.1% mastectomy or subcutaneous mastectomy, 30.9% lumpectomy (more details in the paper)</td>
<td></td>
<td>894 (33) 88*</td>
<td>1374 (52) 58*</td>
<td>416 (15) 17*</td>
</tr>
<tr>
<td>Sidoni (2004)</td>
<td>(36)</td>
<td>82</td>
<td>Not reported</td>
<td></td>
<td>Min 5 27 (33) 83*</td>
<td>39 (48) 60*</td>
<td>16 (19) 42*</td>
</tr>
<tr>
<td>Eden (2004)</td>
<td>(37)</td>
<td></td>
<td>5 patients adjuvant systemic therapy (no more information was provided)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagey (2006)</td>
<td>(40)</td>
<td>557</td>
<td>Chemotherapy</td>
<td>0.4-39.4 Median 8.7</td>
<td>34 (6) 73*</td>
<td>236 (42) 60*</td>
<td>287 (52) 38*</td>
</tr>
<tr>
<td>Lundin (2006)</td>
<td>(35)</td>
<td></td>
<td>Node negative, Node positive</td>
<td></td>
<td>Median 9.5 79*</td>
<td>70*</td>
<td>29*</td>
</tr>
<tr>
<td>D'Erdita (2001)</td>
<td>(38)</td>
<td>402</td>
<td>Surgery + axillary clearance (details provided in the paper)</td>
<td>11-19 median 15</td>
<td>110 (27) 88*</td>
<td>198 (49) 70%*</td>
<td>94 (23) 40*</td>
</tr>
<tr>
<td>Galea (1992)</td>
<td>(6)</td>
<td>1629</td>
<td>Not reported</td>
<td></td>
<td>470 (29) 80*</td>
<td>879 (54) 42*</td>
<td>280 (17) 13*</td>
</tr>
</tbody>
</table>

4. Eden et al. studied 46 patients who developed distant metastasis within 5 years and 51 patients being distant metastasis-free for ≥ 5 years
5. Galea et al. reported 15-year event-free rates
* Inexact read off from graph
Figure 1. Classification tree using biomarkers and clinical predictors
For each branching point/terminal node, numbers in square brackets show respectively number of patients and number of recurrences.
For each branching point, the Log-Rank P-value is reported for comparing RFS in resulting 'child' nodes. For each terminal node, characteristics of cases within it are listed in curved brackets.

To improve the prognostic prediction, bagging of survival trees has been proposed. In this approach, a large number of trees are constructed by resampling from the original data. The aggregated Kaplan-Meier curve for a new patient is defined as the Kaplan-Meier curve of all observations identified by the M leaves containing the new patient [43]. Therefore, no single tree can be reported and communication of results is not simple. Application of bagging was beyond the scope of this paper.

Another approach is to construct the tree using half of the data, and then investigate its ability in risk prediction in the second half (known as data-splitting technique). This approach is not practicable when sample size is small [44].

Missing data is a common problem in oncology. In a recent review of 100 papers reporting survival analysis, published in 2002, a total of 81 papers had data with missing covariates and 4 papers did not provide sufficient information to determine
Table 3. Estimated RFS rates in each of tree nodes

<table>
<thead>
<tr>
<th>Node number</th>
<th>N at start</th>
<th>5-year RFS(%)</th>
<th>7-year RFS(%)</th>
<th>Risk grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>100</td>
<td>100</td>
<td>Low</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>94</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>82</td>
<td>93</td>
<td>87</td>
<td>Low Intermediate (LI)</td>
</tr>
<tr>
<td>4</td>
<td>119</td>
<td>74</td>
<td>67</td>
<td>High Intermediate (HI)</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>64</td>
<td>54</td>
<td>High</td>
</tr>
<tr>
<td>6</td>
<td>71</td>
<td>48</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

whether there was missing data [45]. Complete-case analysis, which is the exclusion of cases with missing data on any of variables under study, was the method most frequently used [45]. However, exclusion of patients with missing data will diminish precision of estimates and generalisability of results [46]. The TSM approach to prognostic modelling has the advantage that the method handles missing data, and so intensive imputation techniques can be avoided. Only 3.5% of patients in the lowest risk group experienced a recurrence compared to 53% of those categorised into the highest risk group had a recurrence (61 out of 116). Endocrine therapy, using tamoxifen or aromatase inhibitors remains the most successful approach to the treatment of early breast cancer but it is likely that many women do not require endocrine therapy at all, or if treated with aromatase inhibitors and/or chemotherapy, derive minimal additional benefit over tamoxifen treatment [47].

Molecular differences between breast cancer tumours support treating different molecular subtypes based on their biology and pathology rather than pathology alone. We have taken a purely statistical ‘survival curve’ approach to merging of small terminal nodes into larger ones. As can be seen from Figure 1 and Table 3, patients with large tumours and with low Tunel and High Prhistro had similar prognosis to that of patients with small tumours (which resulted in merging of nodes 1 and 2). While this might be clinically counter-intuitive, reflection on this could enable TSM models to offer insights, and generate new biological hypotheses about mechanisms that govern cancer progress and interactions between biomarkers, which could be tested in fresh samples. As another example, cases with nodal status of <3 and tumour size of <12 had a poor prognosis if their tune is higher than 107, but had a very good prognosis if their tune is lower than this threshold and if their Prhistro is higher than 172.

It is likely that the validity of the final refinements to the TSM model could be improved with cancer biologist input to decisions regarding merging of small terminal nodes (with similar recurrence-free survival curves), by taking into account the place of TMA variables along the cancer pathway. Certainly the most important issue for a model is its external validity, the extent to which it provides good predictions for similar patients who were not involved in the development of the model. If performance is assessed on the same sample as used for model development, then performance will be overestimated [48]. Therefore results presented in this paper are tentative until validated using a new data set.

Referring to the possibility that for some patients the balance of harm/benefit means that they would be better off with no adjuvant treatment, it has been postulated that it is an inability to identify such patients prior to treatment, rather than an expectation that all patients derive benefit, which drives the treatment of significant number of breast cancer patients with often aggressive chemotherapy [49]. It has also been commented that the identification of novel prognostic markers and their integration in risk prediction is essential for the solution of this dilemma [49]. Over the past few years, applying regression modelling strategies, the role of a large number of candidate predictive biomarkers has been explored [14-16,50,51]. It has been concluded that tumour profiling might improve patient selection for endocrine therapies [14-16,50,51], and that over the next 3 to 5 years biomarkers will be incorporated as part of clinical diagnostic decision making [49]. The majority of published prognostic studies using TSM have focussed on clinical variables and traditional risk factors (such as race, ER and Progesterone Receptor (PR) status, family history) [24]. As an example of a model based on biomarkers, a total of 126 biomarkers, but no other variables, were available to construct a decision tree which predicts recurrence of breast cancer.
cancer [34]. The final tree used information on 6 of the biomarkers. However, to the best of our knowledge, our present study is the first to assess the value of integration of biological and clinical variables together into risk prediction, using TSM.

There are a variety of statistical approaches to deal with the issue of many potential variables [17], and elsewhere we have applied complex regression methods to develop a prognostic model combining biomarkers and clinical variables [41]. However, TSM analysis has a lot to offer researchers, because it provides a readily interpretable picture, which results in easier clinical decision making, and aids future studies [24,24,52-54]. For example, traditional multi-factorial regression tools (such as Cox without interaction term), suppose a uniform effect of the variable for the whole sample, whereas TSM can reveal a factor with different effects in different subgroups, a biologically plausible situation, in that a biomarker might be important for only a subset of patients. TSM therefore has potential benefits in terms of therapeutic management [24]. Furthermore, TSM is easy to apply (no distributional assumptions to be checked), avoids the needs for techniques to deal with missing data, and can be used as a good approximation for a complex model.

Acknowledgments

The data set analyzed was collected under the direction of Professor John Bartlett and his colleagues (Tove Kirkegaard, Liane McGlynn, and Timothy Cooke) at Glasgow University. The work was carried out as part of Mr Baneshi’s PhD degree (submitted to Edinburgh University under supervision of Dr Pamela Warner and Dr Niall Anderson) for which he was supported by the Ministry of Health and Medical Education of Iran and Kerman Medical University.

Conflict of Interest

The authors declare no conflict of interest.

Authors’ Contribution

The statistical ideas for the PhD study were BMR’s. However his regular meetings with the supervisors (Dr WP and Dr AN) and the clinical collaborators of this study (in particular Professor BJ), to address the statistical approaches useful in the field of time-to-event clinical outcome data, and in presentation of results in a way meaningful to a clinical audience, will have contributed to the evolution of some ideas. All authors have read and approved the final version.

References

25. Bloom HJ, Richardson WW. Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 1957 Sep; 11(3):359-77.

