کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله
Granular Corneal Dystrophy Manifesting after Radial Keratotomy

Sepehr Feizi, MD; Mohammad Pakravan, MD; Alireza Baradaran-Rafii, MD; Shahin Yazdani, MD

Shaheed Beheshti Medical University, Tehran, Iran

Purpose: To report manifestation of granular corneal dystrophy after radial keratotomy (RK).

Case Report: A 32-year-old man presented with white radial lines in both corneas. He had undergone uncomplicated RK in both eyes 8 years ago. Preoperative refraction had been OD: -3.5 -0.75@180 and OS: -3.0 -0.5@175. Uncorrected visual acuity was OD: 8/10 and OS: 7/10; best corrected visual acuity was 9/10 in both eyes with OD: -0.5 -0.5@60 and OS: -0.75 -0.5@80. Slit lamp examination revealed discrete well-demarcated whitish lesions with clear intervening stroma in the central anterior cornea consistent with granular dystrophy. Similar opacities were present within the RK incisions.

Conclusion: Granular dystrophy deposits may appear within RK incisions besides other previously reported locations.

INTRODUCTION

Granular corneal dystrophy is the most common hereditary stromal corneal dystrophy. It is an autosomal dominant condition, characterized by deposition of opacities in the corneal stroma. Visual impairment is rarely severe until the fifth decade. Visual impairment results from progressive loss of corneal transparency due to deposition of aberrantly processed kerato-epithelin.

Radial keratotomy (RK) is a keratorefractive procedure used to correct myopia in which deep non-penetrating, radial corneal incisions flatten the central cornea. Although several reports have indicated the occurrence of various corneal dystrophies after RK, to the best of our knowledge this report is the first describing of granular corneal dystrophy after RK.

CASE REPORT

A 32-year-old man, who had undergone uncomplicated RK in both eyes 8 years ago, was seen complaining of white lines in his eyes. Past medical history was unremarkable and he did not mention any systemic disorder. Upon presentation, uncorrected visual acuity was OD: 8/10 and OS: 7/10. Refraction was OD: -0.5 -0.5@60 and OS: -0.75 -0.5@80 and best corrected visual acuity was 9/10 in both eyes. Slit lamp examination revealed several discrete well-demarcated white opacities in the anterior corneal stroma in both eyes, typical of granular dystrophy (Fig. 1). The intervening cornea was clear except for the RK incisions which showed similar white deposits within the incisions. Corneal sensation and other ocular examinations were normal. Central corneal thickness
measured by ultrasonic pachymetry was 533 μm in the right eye and 542 μm in the left eye. Preoperative data revealed baseline refraction of OD: -3.5 -0.75@180 and OS: -3.0 -0.5@175 and normal corneal clarity in both corneas. Other ocular examinations had been unremarkable. We called on first- and second-degree relatives for ophthalmic examination and diagnosed granular dystrophy in one of his cousins.

DISCUSSION

Granular corneal dystrophy appears in the first and second decades of life.\(^1\) It is a bilateral condition characterized by deposition of small, discrete, sharply demarcated, grayish-white opacities in the central anterior stroma. The intervening stroma remains clear and vision is usually not affected early in the course. With disease progression, lesions increase in size and number and may coalesce with extension into deeper and more peripheral stroma. However, the peripheral cornea usually remains free of deposits. Visual impairment is rarely severe until the fifth decade\(^2\) which is due to progressive loss of corneal transparency secondary to deposition of aberrantly processed kerato-epithelin.\(^3\) Light microscopy demonstrates eosinophilic, rod, or trapezoidal-shaped hyaline deposits in the stroma and beneath the epithelium. These deposits stain bright red with Masson’s trichrome and weakly with periodic acid-Schiff.\(^5\) The exact nature and source of the deposits remain unclear. It is also unknown whether these deposits are produced by epithelium, stromal keratocytes, or both; however, characteristic rod-shaped structures have been seen within both cell types.\(^6\)

The histopathologic features of post-RK corneas have been described in a number of reports. Different reparative responses in RK incisions have been observed, ranging from hypertrophic scar formation to persistent non-healing incisions.\(^7\) A striking feature of the post-RK cornea is the presence of an epithelial plug which remains several years after surgery.\(^8\) Additional abnormalities include aberrant epithelial basal lamina synthesis including basal lamina duplication and absence of basal lamina over areas of extensive fibrosis,\(^9\) Bowman layer discontinuity, extracellular matrix formation around the incisions, inability to synthesize normal type IV collagen around epithelial plugs, increased number of stromal cells, and abnormalities in underlying endothelial cells such as endothelial permeability and cell loss.\(^10\) Subepithelial fibrosis after radial keratotomy was reported by Gieser and Sugar.\(^11\) A review of the literature indicates that in most cases, post-RK corneal scarring occurs along the radial incisions.\(^12\) Other variations in wound healing are formation of epithelial retention cysts, incomplete wound healing, persistent wound gape and hypertrophic scar formation.\(^7\)

![Figure 1](https://www.SID.ir)
Deposition of abnormal material in corneas with epithelial (map-dot-fingerprint) dystrophies after RK or stromal dystrophies after other keratorefractive procedures has been reported. Production of such abnormal material can be due to activation of keratocytes following LASIK or epithelial cells after PRK. The first hypothesis which may explain the deposition of dystrophic material in such eyes is that severing corneal collagen fibers during RK induces attachment of large amounts of abnormal material (hyaline) to the collagen in the incisions. Roh et al. reported three cases with Avellino corneal dystrophy who underwent LASIK. Abnormal deposition of extracellular granular material was noted in the interface where collagen bundles were cut by the microkeratome or damaged by laser. This material was not observed in deeper collagen fibers in the same cornea which was not damaged during the operation.

Another hypothesis is stromal migration of epithelial cells into the incisions. Frising et al. suggested the epithelial origin of granular dystrophy deposits by observing deep stromal deposits in suture tracts and at the host-donor interface. Some suggest that since epithelial findings are more prominent in recurrent granular dystrophy after penetrating keratoplasty, the condition may have an epithelial origin. Electron microscopic studies have found these deposits to be surrounded by cytoplasmic extensions of epithelial cells or even within the corneal epithelium. According to this hypothesis, abnormal kerato-epithelin material may accumulate within RK incisions because of activation and proliferation of epithelial cells to fill the incisions. We presume that proliferating and migrating corneal epithelial cells from the margin of the RK incisions might be altered both morphologically and functionally with a tendency to over-express abnormal kerato-epithelin.

This case report may provide some understanding about the predilection of deposits of recurrent granular dystrophy for certain locations, such as within suture tracts and at the host-donor interface after penetrating keratoplasty, beneath the corneal flap in LASIK, at the periphery of the ablation zone in PRK and within RK incisions as described by this report.

REFERENCES

کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله