کارگاه‌های آموزشی مرکز اطلاعات علمی

آموزش مهارت‌های کاربردی ISI در تدوین و چاپ مقالات

روش تحقیق گمی

آموزش نرم‌افزار برای پژوهشگران
On Graded Weakly Classical Prime Submodules

Rashid Abu-Dawwasa,\,*, Khaldoun Al-Zoubib

aDepartment of Mathematics, Yarmouk University, Jordan.
bDepartment of Mathematics and Statistics, Jordan University of Science and Technology, Jordan.

E-mail: rrashid@yu.edu.jo
E-mail: kfzoubi@just.edu.jo

Abstract. Let R be a G-graded ring and M be a G-gr-R-module. In this article, we introduce the concept of graded weakly classical prime submodules and give some properties of such a submodule.

Keywords: Graded prime submodules, Graded weakly classical prime submodules, Graded classical prime submodules.

2010 Mathematics subject classification: 13A02, 16W50.

1. Introduction

Gr-prime ideals of a commutative graded ring have been introduced and studied by Refai and Al-Zoubi in [14]. Gr-weakly prime ideals of a commutative graded ring have been introduced and studied by Atani in [4]. Gr-prime and gr-weakly prime submodules of graded modules over graded commutative rings have been studied by various authors; (see, for example [5, 6, 7, 12]). Gr-2-absorbing and gr-weakly 2-absorbing submodules have been studied by Al-Zoubi and Abu-Dawwas in [2]. Also, gr-classical prime submodules of graded modules over graded commutative rings have been introduced and studied by various authors; (see [3, 8]). Here we introduce the concept of graded weakly classical prime (gr-weakly classical prime) submodules. A number of results

*Corresponding Author

Received 17 June 2016; Accepted 12 January 2017
©2017 Academic Center for Education, Culture and Research TMU

153
concerning of gr-weakly classical prime submodules are given (see sec. 2). First, we recall some basic properties of graded rings and modules which will be used in the sequel. We refer to [9] and [10] for these basic properties and more information on graded rings and modules. Let G be a group with identity e. A ring R is said to be G-graded ring if there exist additive subgroups R_g of R such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. The elements of R_g are called homogeneous of degree g and R_e (the identity component of R) is a subring of R and $1 \in R_e$. For $x \in R$, x can be written uniquely as $\sum_{g \in G} x_g$ where x_g is the component of x in R_g. Also we write $h(R) = \bigcup_{g \in G} R_g$ and $\text{supp}(R,G) = \{g \in G : R_g \neq 0\}$. Let M be a left R-module. Then M is a G-graded R-module (shortly, M is gr-R-module) if there exist additive subgroups M_g of M indexed by the elements $g \in G$ such that $M = \bigoplus_{g \in G} M_g$ and $R_g M_h \subseteq M_{gh}$ for all $g, h \in G$. The elements of M_g are called homogeneous of degree g. If $x \in M$, then x can be written uniquely as $\sum_{g \in G} x_g$, where x_g is the component of x in M_g. Clearly, M_g is R_e-submodule of M for all $g \in G$. Also we write $h(M) = \bigcup_{g \in G} M_g$. and $\text{supp}(M,G) = \{g \in G : M_g \neq 0\}$. Let R be a G-graded ring and I be an ideal of R. Then I is called G-graded ideal if $I = \bigoplus_{g \in G} (I \cap R_g)$, i.e., if $x \in I$ and $x = \sum_{g \in G} x_g$, then $x_g \in I$ for all $g \in G$. An ideal of a G-graded ring need not be G-graded.

Let M be a G-gr-R-module and N be an R-submodule of M. Then N is called G-gr-R-submodule if $N = \bigoplus_{g \in G} (N \cap M_g)$, i.e., if $x \in N$ and $x = \sum_{g \in G} x_g$, then $x_g \in N$ for all $g \in G$. Also, an R-submodule of a G-graded R-module need not be G-graded. Let R be a G-graded ring and M a graded R-module. A proper graded ideal P of R is said to be gr-prime (resp. gr-weakly prime) ideal if whenever $r,s \in h(R)$ with $rs \in P$ (resp. $0 \neq rs \in P$), then either $r \in P$ or $s \in P$. A proper graded submodule N of a graded module M is said to be gr-prime (resp. gr-weakly prime) submodule if whenever $r \in h(R)$ and $m \in h(M)$ with $rm \in N$ (resp. $0 \neq rm \in N$), then either $r \in (N :_R M)$ or $m \in N$. A proper graded submodule N of M is called a gr-classical prime submodule if whenever $r,s \in h(R)$ and $m \in h(M)$ with $rsm \in N$, then either $rsm \in N$ or $sm \in N$. Of course, every gr-prime submodule is a gr-classical prime submodule, but the converse is not true in general (see [3, Example 2.3]). The annihilator of graded R-module M which is denoted by $\text{Ann}_G(M)$ is $(0 : M)$. Furthermore, for every $m \in h(M)$, $(0 : m)$ is denoted by $\text{Ann}_G(m)$.

2. Results

Definition 2.1. Let R be a G-graded ring, M a graded R-module and N a proper graded submodule of M. N is said to be graded weakly classical prime (gr-weakly classical prime) if whenever $a,b \in h(R)$ and $m \in h(M)$ such that $0 \neq abm \in N$, then either $am \in N$ or $bm \in N$.

www.SID.ir
Proposition 2.2. Let M be a gr-R-module and N be a gr-R-submodule of M. If $(N : m)$ is a gr-weakly prime ideal of R for every $m \in h(M) - N$, then N is a gr-weakly classical prime R-submodule of M.

Proof. Let $a, b \in h(R)$ and $m \in h(M)$ such that $0 \neq abm \in N$. If $m \in N$, then we are done. Suppose $m \notin N$. Then $0 \neq ab \in (N : m)$ and since $(N : m)$ is a gr-weakly prime ideal, either $a \in (N : m)$ or $b \in (N : m)$ and then either $am \in N$ or $bm \in N$ and hence N is a gr-weakly classical prime R-submodule of M. □

Proposition 2.3. Let M be a gr-R-module and N be a gr-R-submodule of M. If N is a gr-weakly classical prime R-submodule of M and $m \in h(M) - N$ such that $Ann_G(m) = 0$, then $(N : m)$ is a gr-weakly prime ideal of R.

Proof. By [5, Lemma 2.1], $(N : m)$ is a graded ideal of R. Let $a, b \in h(R)$ such that $0 \neq ab \in (N : m)$. Then since $Ann_G(m) = 0$, $0 \neq abm \in N$ and since N is gr-weakly classical prime, either $am \in N$ or $bm \in N$ and then either $a \in (N : m)$ or $b \in (N : m)$. Hence, $(N : m)$ is a gr-weakly prime ideal of R. □

Let M and L be two gr-R-modules. A homomorphism of gr-R-module $\phi : M \rightarrow L$ is a homomorphism of R-modules satisfying $\phi(M_g) \subseteq L_g$ for every $g \in G$(see [10]).

Theorem 2.4. Let R be a G-graded ring and M, L be two gr-R-modules and $\phi : M \rightarrow L$ be an epimorphism of gr-modules. If N is a gr-weakly classical prime R-submodule of M containing $\text{Ker}(\phi)$, then $f(N)$ is a gr-weakly classical prime R-submodule of L.

Proof. Firstly, we prove that $f(N)$ is a graded R-submodule of L. Clearly, $f(N)$ is an R-submodule of L. Let $y \in f(N)$. Then there exists $x \in N$ such that $f(x) = y$. Let $x = \sum_{i=1}^{n} y_{xi}$, where $x_{gi} \in M_{gi}$, 0, $y_i \neq y_j$ for $i \neq j$. Then $y = \sum_{i=1}^{n} f(x_{gi})$. For each $1 \leq i \leq n$, there exists $h_i \in \text{supp}(L, G)$ with $f(x_{gi}) \in L_{h_i} - 0$ and $h_i \neq h_j$ for $i \neq j$. If $h_i = h_j$ for all $1 \leq i \leq n$, then $y_h = 0 = f(0) \in f(N)$. If $h = h_i$ for some $1 \leq i \leq n$, then $y_h = f(x_{gi})$. Since $x \in N$ and N is graded, $x_{gi} \in N$ and then $y_h \in f(N)$. Hence, $f(N)$ is a graded R-submodule of L. Secondly, we prove that $f(M_g) = L_g$ for all $g \in G$. Let $g \in G$ and let $r_g \in L_g$. If $r_g = 0$, then $r_g = 0 = f(0) \in f(M_g)$. Suppose $r_g \neq 0$. Since f is onto, there exists $x \in M - 0$ such that $f(x) = r_g$. Suppose $x = \sum_{i=1}^{n} y_{xi}$, where $x_{gi} \in M_{gi} - 0$, $y_i \neq y_j$ for $i \neq j$. Then $r_g = \sum_{i=1}^{n} f(x_{gi}) = \sum_{i=1}^{k} f(x_{gi})$ where $1 \leq i \leq n$ and $f(x_{gi}) \neq 0$ for all $1 \leq i \leq k$. Since $f(x_{gi}) \in L_{g_{ti}}$, $r_g \in L_g \cap \sum_{i=1}^{k} L_{g_{ti}}$. Thus, $g = g_{t_{i}} = = g_{t_{k}}$ and hence $k = 1$ and $f(x_{gi}) = f(x_{g}) = r_g$. So, $r_g \in f(M_g)$ and hence $L_g \subseteq f(M_g)$ and as $f(M_g) \subseteq L_g$, $L_g = f(M_g)$. Now, let $a, b \in h(R)$ and $s \in h(L)$ such that $0 \neq abs \in f(N)$. Since $s \in h(L), s \in L_g$ for some $g \in G$ and since $L_g = f(M_g)$,
there exists \(m \in M_g \subseteq h(M) \) such that \(f(m) = s \) and then \(0 \neq f(abm) \in f(N) \), it follows that there exists \(n \in N \cap h(M) \) such that \(f(abm) = f(n) \) and then \(f(abm - n) = 0 \), so \(abm - n \in Ker(f) \subseteq N \) and as \(n \in N \), \(0 \neq abm \in N \). Since \(N \) is gr-weakly classical prime, either \(am \in N \) or \(bm \in N \) and then either \(as \in f(N) \) or \(bs \in f(N) \). Hence, \(f(N) \) is a gr-weakly classical prime \(R \)-submodule of \(L \).

Let \(M \) be a \(G \)-graded \(R \)-module and \(K \) be an \(R \)-submodule of \(M \). Then \(M/K \) is a graded \(R \)-module by putting \((M/K)_g = (M_g + K)/K\).

Proposition 2.5. Let \(K \) and \(N \) be two graded proper \(R \)-submodules of a gr-\(R \)-module \(M \) such that \(K \subseteq N \). If \(K \) is a gr-weakly classical prime \(R \)-submodule of \(M \) and \(N/K \) is a gr-weakly classical prime \(R \)-submodule of \(M/K \), then \(N \) is a gr-weakly classical prime \(R \)-submodule of \(M \).

Proof. Let \(a, b \in h(R) \) and \(m \in h(M) \) such that \(0 \neq abm \in N \). If \(abm \in K \), then as \(K \) is gr-weakly classical prime, either \(am \in K \subseteq N \) or \(bm \in K \subseteq N \) and then we are done. Suppose \(abm \notin K \). Since \(m \in h(M) \), \(m \in M_g \) for some \(g \in G \) and then \(m + K \in (M_g + K)/K = (M/K)_g \subseteq h(M/K) \). Now, \(0 \neq ab(m + K) \in N/K \) and since \(N/K \) is gr-weakly classical prime, either \(am + K \in N/K \) or \(bm + K \in N/K \) and then either \(am \in N \) or \(bm \in N \). Hence, \(N \) is a gr-weakly classical prime \(R \)-submodule of \(M \).

Proposition 2.6. Let \(N \) be a graded \(R \)-submodule of a gr-\(R \)-module \(M \). If \(N \) is a gr-weakly prime \(R \)-submodule of \(M \), then \(N \) is a gr-weakly classical prime \(R \)-submodule of \(M \).

Proof. Let \(a, b \in h(R) \) and \(m \in h(M) \) such that \(0 \neq abm \in N \). Then since \(N \) is gr-weakly prime, either \(bm \in N \) or \(a \in (N : M) \). If \(bm \in N \), then we are done. If \(a \in (N : M) \), then \(am \in N \). Hence, \(N \) is a gr-weakly classical prime \(R \)-submodule of \(M \).

The concept of gr-2-absorbing submodules (respectively, gr-weakly 2-absorbing submodules) of a graded module over a commutative graded ring is studied in [2]. A graded proper \(R \)-submodule \(N \) of a gr-\(R \)-module \(M \) is said to be gr-2-absorbing (gr-weakly 2-absorbing) if whenever \(a, b \in h(R) \) and \(m \in h(M) \) such that \(abm \in N \) \((0 \neq abm \in N)\), then either \(am \in N \), \(bm \in N \) or \(ab \in (N : M) \).

It is clear that if \(N \) is a gr-weakly classical prime \(R \)-submodule of \(M \), then \(N \) is a gr-weakly 2-absorbing \(R \)-submodule of \(M \). We introduce the following:

Proposition 2.7. If \(N \) is a gr-weakly 2-absorbing \(R \)-submodule of \(M \) and \((N : M)\) is a gr-weakly prime ideal of \(R \), then \(N \) is a gr-weakly classical prime \(R \)-submodule of \(M \).

Proof. Let \(a, b \in h(R) \) and \(m \in h(M) \) such that \(0 \neq abm \in N \). Then since \(N \) is gr-weakly 2-absorbing, \(am \in N \), \(bm \in N \) or \(ab \in (N : M) \). If \(am \in N \)
or \(bm \in N \), then we are done. Suppose \(ab \in (N : M) \). If \(ab = 0 \), then \(abm = 0 \) a contradiction. So, \(0 \neq ab \in (N : M) \) and since \((N : M) \) is gr-weakly prime, either \(a \in (N : M) \) or \(b \in (N : M) \) and then either \(am \in aM \subseteq N \) or \(bm \in bM \subseteq N \). Hence, \(N \) is a gr-weakly classical prime \(R \)-submodule of \(M \).

Proposition 2.8. Let \(N \) be a graded \(R \)-submodule of a gr-R-module \(M \). If \(N \) is a gr-weakly classical prime \(R \)-submodule of \(M \), then \(N_g \) is a weakly classical prime \(R_g \)-submodule of \(M_g \) for all \(g \in G \).

Proof. Let \(g \in G \). Let \(a, b \in R_e \) and \(m \in M_g \) such that \(0 \neq abm \in N_g \). Since \(R_e \subseteq h(R) \) and \(M_g \subseteq h(M) \), \(a, b \in h(R) \) and \(m \in h(M) \). Since \(N_g \subseteq N \), \(0 \neq abm \in N \) and since \(N \) is gr-weakly classical prime, either \(am \in N \) or \(bm \in N \). If \(am \in N \), then \(am \in R_eM_g \) \(\bigcap N \subseteq M_g \) \(\bigcap N = N_g \). Similarly, if \(bm \in N \), then \(bm \in N_g \). Hence, \(N_g \) is a weakly classical prime \(R_g \)-submodule of \(M_g \).

Let \(M \) be an \(R \)-module and \(N \) be an \(R \)-submodule of \(M \). Then for every \(a \in R \), we define \((N : M) a = \{ m \in M : am \subseteq N \} \). it is easy to prove that \((N : M) a\) is an \(R \)-submodule of \(M \) containing \(N \). Moreover, it is easy to prove that if \(N \) is a graded \(R \)-submodule of a gr-R-module \(M \), then \((N : M) a\) is a graded \(R \)-submodule of \(M \).

The next proposition gives a characterization for gr-weakly classical prime submodules.

Proposition 2.9. Let \(M \) be a gr-R-module and \(N \) be a graded \(R \)-submodule of \(M \). Then \(N \) is a gr-weakly classical prime \(R \)-submodule of \(M \) if and only if \((N : h(M)) ab = (0 : h(M)) ab \bigcup (N : h(M)) a \bigcup (N : h(M)) b \) for all \(a, b \in h(R) \).

Proof. Suppose \(N \) is a gr-weakly classical prime \(R \)-submodule of \(M \). Let \(a, b \in h(R) \) and \(m \in (N : h(M)) ab \). Then \(abm \in N \). If \(abm = 0 \), then \(m \in (0 : h(M)) ab \). Suppose \(abm \neq 0 \). Since \(N \) is gr-weakly classical prime, either \(am \in N \) or \(bm \in N \) and then either \(m \in (N : h(M)) a \) or \((N : h(M)) b \). Conversely, Let \(a, b \in h(R) \) and \(m \in h(M) \) such that \(0 \neq abm \in N \). Then \(m \in (N : h(M)) ab \) and then by assumption, either \(m \in (N : h(M)) a \) or \(m \in (N : h(M)) b \) that is either \(am \in N \) or \(bm \in N \). Hence, \(N \) is a gr-weakly classical prime \(R \)-submodule of \(M \).

Similarly, we introduce the following:

Proposition 2.10. Let \(M \) be a gr-R-module and \(N \) be a graded \(R \)-submodule of \(M \). If \(N \) is a gr-weakly classical prime \(R \)-submodule of \(M \), then \((N : h(R)) abm = (0 : h(R)) abm \bigcup (N : h(R)) am \bigcup (N : h(R)) bm \) for all \(a, b \in h(R) \) and \(m \in h(M) \).

Proof. Let \(a, b \in h(R) \) and \(m \in h(M) \). Assume that \(r \in (N : h(R)) abm \). Then \(rabm \in N \). If \(rabm = 0 \), then \(r \in (0 : h(R)) abm \). Suppose \(rabm \neq 0 \). Then
0 \neq ab(rm) \in N \text{ and since } N \text{ is gr-weakly classical prime, either } arm \in N \text{ or } brm \in N \text{ and then either } r \in (N : h(R) am) \text{ or } r \in (N : h(R) bm). \qed

Theorem 2.11. Let M_1, M_2 be two graded R-modules and N_1 be a proper graded R-submodule of M_1. Then the following conditions are equivalent:

1. $N = N_1 \times M_2$ is a gr-weakly classical prime submodule of $M = M_1 \times M_2$.
2. N_1 is a gr-weakly classical prime submodule of M_1 and for each $a, b \in h(R)$ and $m_1 \in h(M_1)$ we have $abm_1 = 0$, $am_1 \notin N_1$, $bm_1 \notin N_1 \Rightarrow ab \in \text{Ann}_{G}(M_2)$.

Proof. (1) \Rightarrow (2) Suppose that $N = N_1 \times M_2$ is a gr-weakly classical prime submodule of $M = M_1 \times M_2$. Let $a, b \in h(R)$ and $m_1 \in h(M_1)$ be such that $0 \neq abm_1 \in N_1$. Then $(0, 0) \neq ab(m_1, 0) \in N$. Thus $a(m_1, 0) \in N$ or $b(m_1, 0) \in N$, and so $am_1 \in N_1$ or $bm_1 \in N_1$. Consequently N_1 is a gr-weakly classical prime submodule of M_1. Now, assume that $abm_1 = 0$ for some $a, b \in h(R)$ and $m_1 \in h(M_1)$ such that $am_1 \notin N_1$ and $bm_1 \notin N_1$. Suppose that $ab \notin \text{Ann}_{G}(M_2)$. Then there exists $m_2 \in h(M_2)$ such that $abm_2 \neq 0$. Hence $(0, 0) \neq ab(m_1, m_2) \in N$, and so $a(m_1, m_2) \in N$ or $b(m_1, m_2) \in N$. Thus $am_1 \in N_1$ or $bm_1 \in N_1$ which is a contradiction. Consequently $ab \in \text{Ann}_{G}(M_2)$.

(2) \Rightarrow (1) Let $a, b \in h(R)$ and $(m_1, m_2) \in h(M) = h(M_1 \times M_2)$ be such that $(0, 0) \neq ab(m_1, m_2) \in N = N_1 \times M_2$. First assume that $abm_1 \neq 0$. Then by part (2), $am_1 \in N_1$ or $bm_1 \in N_1$. So $a(m_1, m_2) \in N$ or $b(m_1, m_2) \in N$, and thus we are done. If $abm_1 = 0$, then $abm_2 \neq 0$. Therefore $ab \notin \text{Ann}_{G}(M_2)$, and so part (2) implies that either $am_1 \in N_1$ or $bm_1 \in N_1$. Again we have that $a(m_1, m_2) \in N$ or $b(m_1, m_2) \in N$ which shows N is a gr-weakly classical prime submodule of M. \qed

The following two propositions have easy verifications.

Proposition 2.12. Let M_1, M_2 be two graded R-modules and N_1 be a proper graded R-submodule of M_1. Then $N = N_1 \times M_2$ is a gr-classical prime submodule of $M = M_1 \times M_2$ if and only if N_1 is a gr-classical prime submodule of M_1.

Proposition 2.13. Let M_1, M_2 be two graded R-modules and N_1, N_2 be two proper graded R-submodules of M_1, M_2, respectively. If $N = N_1 \times N_2$ is a gr-weakly classical prime (resp. gr-classical prime) submodule of $M = M_1 \times M_2$, then N_1 is a gr-weakly classical prime (resp. gr-classical prime) submodule of M_1 and N_2 is a gr-weakly classical prime (resp. gr-classical prime) submodule of M_2.

Let R_i be a commutative graded ring with unity and M_i be a graded R_i-module, for $i = 1, 2$. Consider the graded ring $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is a graded R-module and each graded submodule of M is in the form of $N = N_1 \times N_2$ for some graded submodules N_1 of M_1 and N_2 of M_2.

www.SID.ir
Theorem 2.14. Let $R = R_1 \times R_2$ be a graded ring and $M = M_1 \times M_2$ be a graded R-module where M_1 is a graded R_1-module and M_2 is a graded R_2-module. Suppose that $N = \bigcap S = N_1 \times M_2$ is a proper graded submodule of M. Then the following conditions are equivalent:

1. N_1 is a gr-classical prime submodule of M_1;
2. N is a gr-classical prime submodule of M;
3. N is a gr-weakly classical prime submodule of M.

Proof. (1) \Rightarrow (2) Let $(r_1, r_2)(s_1, s_2)(m_1, m_2) \in N$ for some $(r_1, r_2), (s_1, s_2) \in h(R)$ and $(m_1, m_2) \in h(M)$. Then $r_1s_1m_1 \in N_1$ so either $r_1m_1 \in N_1$ or $s_1m_1 \in N_1$ which shows that either $(r_1, r_2)(m_1, m_2) \in N$ or $(s_1, s_2)(m_1, m_2) \in N$. Consequently N is a gr-classical prime submodule of M.

(2) \Rightarrow (3) It is clear that every gr-classical prime submodule is a gr-weakly classical prime submodule.

(3) \Rightarrow (1) Let $rsm \in N_1$ for some $r, s \in h(R_1)$ and $m \in h(M_1)$. We may assume that $0 \neq m' \in h(M_2)$. Therefore $0 \neq (r, 1)(s, 1)(m, m') \in N$. So either $(r, 1)(m, m') \in N$ or $(s, 1)(m, m') \in N$. Therefore $rm \in N_1$ or $sm \in N_1$. Hence N_1 is a gr-classical prime submodule of M_1.

Let R be a G-graded ring, M be a graded R-module and $S \subseteq h(R)$ be a multiplicatively closed subset of R. Then the ring of fraction $S^{-1}R$ is a graded ring which is called graded ring of fractions. Indeed, $S^{-1}R = \bigoplus_{g \in G} (S^{-1}R)_g$ where $(S^{-1}R)_g = \{r/s : r \in R, s \in S \text{ and } g = (\deg s)^{-1}(\deg r)\}$. The module of fraction $S^{-1}M$ over a graded ring $S^{-1}R$ is a graded module which is called module of fractions, if $S^{-1}M = \bigoplus_{g \in G} (S^{-1}M)_g$ where $(S^{-1}M)_g = \{m/s : m \in M, s \in S \text{ and } g = (\deg s)^{-1}(\deg m)\}$. We write $h(S^{-1}R) = \bigcup_{g \in G} (S^{-1}R)_g$ and $h(S^{-1}M) = \bigcup_{g \in G} (S^{-1}M)_g$, (see[10]).

A graded zero-divisor on a graded R-module M is an element $r \in h(R)$ for which there exists $m \in h(M)$ such that $m \neq 0$ but $rm = 0$. The set of all graded zero-divisors on M is denoted by $G = Zdv_R(M)$.

The following result studies the behavior of gr-weakly classical prime submodules under localization.

Proposition 2.15. Let R be a G-graded ring, M a graded R-module and $S \subseteq h(R)$ a multiplication closed subset of R. Then the following hold:

1. If N is a gr-weakly classical prime R-submodule of M and $(N : M) \cap S = \phi$, then $S^{-1}N$ is a gr-weakly classical prime R-submodule of $S^{-1}M$.
2. If $S^{-1}N$ is a gr-weakly classical prime R-submodule of $S^{-1}M$ such that $S \cap G = Zdv_R(N) = \phi$ and $S \cap G = Zdv_R(M/N) = \phi$, then N is a gr-weakly classical prime R-submodule of M.

Proof. (1) Let N be a gr-weakly classical prime R-submodule of M and $(N : M) \cap S = \phi$. Suppose $0 \neq \frac{r \cdot s}{s} \in S^{-1}N$ for some $\frac{r}{s}, \frac{t}{s} \in h(S^{-1}R)$
Theorem 2.16. Let R be a G-graded ring, M a graded R-module and N a gr-weakly classical prime submodule of M. Then for each $g \in M_g$, either N_g is a classical prime R_e-submodule of M_g or $(N_g : R_e M_g)^2 N_g = 0$.

Proof. By Proposition 2.8, N_g is a weakly classical prime R_e-submodule of M_g for every $g \in M_g$. It is enough to show that if $(N_g : R_e M_g)^2 N_g \neq 0$ for some $g \in G$, then N_g is a classical prime R_e-submodule of M_g. Let $rs m \in N_g$ where $r, s \in R_e$ and $m \in M_g$. If $rs m \neq 0$, then either $rm \in N_g$ or $sm \in N_g$ since N_g is a weakly classical prime R_e-submodule of M_g. So suppose that

$$rs n = 0.$$

If $rs N_g \neq 0$, then there is an element $n \in N_g$ such that $rs n \neq 0$, so $0 \neq rs(m + n) = rs n \in N_g$, so we conclude that $r(m + n) \in N_g$ or $s(m + n) \in N_g$. Thus $rm \in N_g$ or $sm \in N_g$. So we can assume that $rs N_g = 0$. If $r(N_g : R_e M_g)m \neq 0$ then there is an element $w \in (N_g : R_e M_g)$ such that $rwm \neq 0$. Then $r(s + w)m \neq 0$ because $rs m = 0$. Since $wm \in N_g$, $r(s + w)m \in N_g$. Then $rm \in N_g$ or $(s + w)m \in N_g$. Hence $rm \in N_g$ or $sm \in N_g$. So we can assume that $r(N_g : R_e M_g)m = 0$. Similarly, we can assume that $s(N_g : R_e M_g)m = 0$. If $r(N_g : R_e M_g)N_g \neq 0$ then $rka \neq 0$ for some $k \in (N_g : R_e M_g)$ and $a \in N_g$. Since $rs N_g = 0$ and $r(N_g : R_e M_g)m = 0$, we conclude that $0 \neq r(s + k)(m + a) = rka \in N_g$. So $r(m + a) \in N_g$ or $(s + k)(m + a) \in N_g$. Hence $rm \in N_g$ or $sm \in N_g$. So we can assume that $r(N_g : R_e M_g)N_g = 0$. Similarly, we can assume that $s(N_g : R_e M_g)N_g = 0$. Since we assume that $(N_g : R_e M_g)^2 N_g \neq 0$, there are $r_1, r_2 \in (N_g : R_e M_g)$ and $t \in N_g$ such that $r_1 r_2 t \neq 0$. Then $(r + r_1)(s + r_2)(m + t) = r_1 r_2 t \in N_g$. So $(r + r_1)(m + t) \in N_g$ or $(s + r_2)(m + t) \in N_g$. Hence $rm \in N_g$ or $sm \in N_g$. Thus N_g is a classical prime R_e-submodule of M_g.

□
Acknowledgments

The authors are very grateful and thankful to the referees for the comments and suggestions that surely make the article better.

References

کارگاه‌های آموزشی مرکز اطلاعات علمی

آموزش مهارت‌های کاربردی ISI در تدوین و چاپ مقالات

روش تحقیق کمی

آموزش نرم‌افزار برای پژوهشگران