On C3-Like Finsler Metrics

A. Tayebia and E. Peyghanb,*

Department of Mathematics, Faculty of Science, Qom University, Qom, Iran
Department of Mathematics, Faculty of Science, Arak University, Arak, Iran

Abstract. In this paper, we study the class of of C3-like Finsler metrics which contains the class of semi-C-reducible Finsler metric. We find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent.

Keywords: Finsler metric, C3-like metric, semi-C-reducible metric.

1. Introduction

Various interesting special forms of Cartan and Landsberg tensors have been obtained by some Finslerians [3][5][14][16]. The Finsler spaces having such special forms have been called C-reducible, P-reducible, general relatively isotropic Landsberg, and etc [6][7]. In [5], Matsumoto introduced the notion of C-reducible Finsler metrics and proved that any Randers metric is C-reducible. Later on, Matsumoto-Hojo proves that the converse is true too [2]. A Randers metric $F = \alpha + \beta$ is just a Riemannian metric α perturbated by a one form β, which has important applications both in mathematics and physics [15].

Let us remark some important curvatures in Finsler geometry. Let (M, F) be a Finsler manifold. The second derivatives of $\frac{1}{2} F^2_x$ at $y \in T_x M_0$ is an inner product g_y on $T_x M$. The third order derivatives of $\frac{1}{3} F^2_x$ at $y \in T_x M_0$ is a symmetric trilinear forms C_y on $T_x M$. We call g_y and C_y the fundamental

*Corresponding Author

E-mail addresses: akbar.tayebi@gmail.com (A. Tayebi), epeyghan@gmail.com (E. Peyghan)

Received 22 October 2010; Accepted 17 March 2011
©2012 Academic Center for Education, Culture and Research TMU
form and the Cartan torsion, respectively. The rate of change of C_y along geodesics is the Landsberg curvature L_y on T_xM for any $y \in T_xM_0$. F is said to be Landsbergian if $L = 0$.

In [11], Prasad-Singh introduced a new class of Finsler spaces named by C^3-like spaces which contains the class of semi-C-reducible spaces, as special case (see [8], [9], [10]). A Finsler metric F is called C^3-like if its Cartan tensor is given by

$$C_{ijk} = \{a_i h_{jk} + a_j h_{ki} + a_k h_{ij}\} + \{b_i I_j I_k + I_i b_j I_k + I_i I_j b_k\},$$

where $a_i = a_i(x, y)$ and $b_i = b_i(x, y)$ are homogeneous scalar functions on TM of degree -1 and 1, respectively. We have some special cases as follows: (i) if $a_i = 0$, then we have $C_{ijk} = \{b_i I_j I_k + I_i b_j I_k + I_i I_j b_k\}$, contracting it with g^{ij} implies that $b_i = 1/(3C^2)I_i$. Then F is a C^2-like metric; (ii) if $b_i = 0$, then we have $C_{ijk} = \{a_i h_{jk} + a_j h_{ki} + a_k h_{ij}\}$, contracting it with g^{ij} implies that $a_i = 1/(n + 1)I_i$. Then F is a C-reducible metric; (iii) if $a_i = p/(n + 1)I_i$ and $b_i = q/(3C^2)I_i$, where $p = p(x, y)$ and $q = q(x, y)$ are scalar functions on TM, then F is a semi-C-reducible metric. It is remarkable that in [3] Matsumoto-Shibata introduced the notion of semi-C-reducibility and proved that every non-Riemannian (α, β)-metric on a manifold M of dimension $n \geq 3$ is semi-C-reducible. Therefore the study of the class of C^3-like Finsler spaces will enhance our understanding of the geometric meaning of (α, β)-metrics.

In this paper, we study C^3-like metrics and find a condition on C^3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent. More precisely, we prove the following.

Theorem 1.1. Let (M,F) be a C^3-like Finsler manifold. Suppose that $b_i = b_i(x, y)$ is constant along Finslerian geodesics. Then F is a weakly Landsberg metric if and only if it is a Landsberg metric.

There are many connections in Finsler geometry [12][13]. In this paper, we use the Berwald connection and the h- and v-covariant derivatives of a Finsler tensor field are denoted by “∇” and “∇” respectively.

2. Preliminaries

Let M be a n-dimensional C^∞ manifold. Denote by T_xM the tangent space at $x \in M$, and by $TM = \bigcup_{x \in M} T_xM$ the tangent bundle of M.

A Finsler metric on M is a function $F: TM \to [0, \infty)$ which has the following properties:

(i) F is C^∞ on $TM_0 := TM \setminus \{0\}$;

(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM,

(iii) for each $y \in T_xM$, the following quadratic form g_y on T_xM is positive definite,

$$g_y(u, v) := \frac{1}{2} \left[F^2(y + su + tv) \right]|_{s,t=0}, \quad u, v \in T_xM.$$

www.SID.ir
Let $x \in M$ and $F_x := F|_{T_x M}$. To measure the non-Euclidean feature of F_x, define $C_y : T_x M \otimes T_x M \otimes T_x M \to \mathbb{R}$ by

$$C_y(u, v, w) := \frac{1}{2} \frac{d}{dt} [g_{y+tw}(u, v)] |_{t=0}, \quad u, v, w \in T_x M.$$

The family $C := \{C_y\}_{y \in TM}$ is called the Cartan torsion. It is well known that $C = 0$ if and only if F is Riemannian. For $y \in T_x M_0$, define mean Cartan torsion I_y by $I_y(u) := I_{ik}(y)u^k$, where $I_{ik} := g^{jk}C_{ijk}$ and $u = u^i \frac{\partial}{\partial x^i}|_x$. By Diecke Theorem, F is Riemannian if and only if $I_y = 0$.

For $y \in T_x M_0$, define the Matsumoto torsion $M_y : T_x M \otimes T_x M \otimes T_x M \to \mathbb{R}$ by

$$M_{ijk} := C_{ijk} - \frac{1}{n+1} \{I_i h_{jk} + I_j h_{ik} + I_k h_{ij}\},$$

and $h_{ij} := FF_{y^j} = g_{ij} - \frac{1}{n+1} g_{ip} g^{pq} g_{jq} y^p$ is the angular metric. A Finsler metric F is said to be C-reducible if $M_y = 0$. This quantity is introduced by Matsumoto [5]. Matsumoto proves that every Randers metric satisfies that $M_y = 0$. A Randers metric $F = \alpha + \beta$ on a manifold M is just a Riemannian metric $\alpha = \sqrt{a_{ij} y^i y^j}$ perturbed by a one form $\beta = b_1(x)y^1$ on M such that $||\beta||_\alpha < 1$. Later on, Matsumoto-Hōjō proves that the converse is true too.

Lemma 2.1. ([2]) A Finsler metric F on a manifold of dimension $n \geq 3$ is a Randers metric if and only if $M_y = 0$, $\forall y \in TM_0$.

A Finsler metric is called semi-C-reducible if its Cartan tensor is given by

$$C_{ijk} = \frac{p}{1+n} \{h_{ij} I_k + h_{ik} I_j + h_{jk} I_i\} + \frac{q}{C^2} I_i I_j I_k,$$

where $p = p(x, y)$ and $q = q(x, y)$ are scalar function on TM and $C^2 = I^i I_i$. Multiplying the definition of semi-C-reducibility with g^{ik} shows that p and q must satisfy $p + q = 1$. If $p = 0$, then F is called C_2-like metric. In [3], Matsumoto and Shibata proved that every (α, β)-metric is semi-C-reducible. Let us remark that an (α, β)-metric is a Finsler metric on M defined by $F := \alpha \phi(s)$, where $s = \beta/\alpha$, $\phi(x)$ is a C^∞ function on the $(-b_0, b_0)$ with certain regularity, α is a Riemannian metric and β is a 1-form on M [4].

Theorem 2.2. ([3][4]) Let $F = \phi(s)\alpha$ be a non-Riemannian (α, β)-metric on a manifold M of dimension $n \geq 3$. Then F is semi-C-reducible.

The horizontal covariant derivatives of C along geodesics give rise to the Landsberg curvature $L_y : T_x M \otimes T_x M \otimes T_x M \to \mathbb{R}$ defined by

$$L_y(u, v, w) := L_{ijk}(y)u^i v^j w^k,$$

where $L_{ijk} := C_{ijk}y^s$, $u = u^i \frac{\partial}{\partial x^i}|_x$, $v = v^i \frac{\partial}{\partial x^i}|_x$ and $w = w^i \frac{\partial}{\partial x^i}|_x$. The family $L := \{L_y\}_{y \in TM_0}$ is called the Landsberg curvature. A Finsler metric is called a Landsberg metric if $L = 0$.

www.SID.ir
3. Proof of Theorem 1.1

In this section, we are going to prove the Theorem 1.1.

Proof of Theorem 1.1: If F is $C3$-like metric

\[(2) \quad C_{ijk} = \{a_i h_{jk} + a_j h_{ki} + a_k h_{ij}\} + \{b_i I_j I_k + b_j I_i I_k + b_k I_j I_k\},\]

where $a_i = a_i(x, y)$ and $b_i = b_i(x, y)$ are scalar functions on TM. Multiplying (2) with g^{ij} implies that

\[(3) \quad a_i = \frac{1}{n + 1} \{(1 - 2I^m b_m)I_i - C^2 b_i\},\]

where $C^2 = I^m I_m$. By plugging (3) in (2), we get

\[(4) \quad C_{ijk} = \frac{1}{n + 1} \{I_i h_{jk} + I_j h_{ki} + I_k h_{ij}\} - \frac{2I^m b_m}{n + 1} \{I_i h_{jk} + I_j h_{ki} + I_k h_{ij}\}\]

\[+ \frac{C^2}{n + 1} \{b_i h_{jk} + b_j h_{ki} + b_k h_{ij}\} + \{b_i I_j I_k + b_j I_i I_k + b_k I_j I_k\},\]

or equivalently

\[(5) \quad M_{ijk} = -\frac{2I^m b_m}{n + 1} \{I_i h_{jk} + I_j h_{ki} + I_k h_{ij}\} - \frac{C^2}{n + 1} \{b_i h_{jk} + b_j h_{ki} + b_k h_{ij}\}\]

\[+ \{b_i I_j I_k + b_j I_i I_k + b_k I_j I_k\}.\]

By taking a horizontal derivation of (5), we have

\[(6) \quad \tilde{M}_{ijk} = -\frac{2}{n + 1} (J^m b_m + I^m b'_m) \{I_i h_{jk} + I_j h_{ki} + I_k h_{ij}\}\]

\[+ \frac{2I^m b_m}{n + 1} \{J_i h_{jk} + J_j h_{ki} + J_k h_{ij}\} - \frac{C^2}{n + 1} \{b_i h_{jk} + b'_j h_{ki} + b'_k h_{ij}\}\]

\[+ \{b_i J_j I_k + b_j J_i I_k + b_j J_i J_k + b_j I_j I_k + b_k J_i I_j + b_k I_j J_k + b_k I_i J_j\}\]

\[+ \{b'_i I_j I_k + b'_j I_i I_k + b'_k I_j J_k\},\]

where $b'_i = b_{i|x}^y$ and

\[
\tilde{M}_{ijk} = \tilde{L}_{ijk} = \frac{1}{n + 1} \{J_i h_{jk} + J_j h_{ki} + J_k h_{ij}\}.\]

Let F be a weakly Landsberg metric. Since b_i is constant along geodesics, i.e., $b'_i = 0$, then (6) reduces to following

\[(7) \quad L_{ijk} = \frac{1}{n + 1} \{J_i h_{jk} + J_j h_{ki} + J_k h_{ij}\} = 0.\]

This means that F is a Landsberg metric. \qed

Corollary 3.1. Let (M, F) be a weakly Landsberg $C3$-like Finsler manifold. Suppose that $q = q(x, y)$ is constant along Finslerian geodesics. Then F is a Landsberg metric.
Proof. Since F is weakly Landsberg, then (6) reduces to following

$$L_{ijk} = -\frac{C^2}{n+1}\{b'_ih_{jk} + b'_kh_{ji} + b'_{ki}h_{ij}\} + \{b'_IJ_iI_k + b'_JI_iI_k + b'_KI_iI_j\}. \quad (8)$$

It is obvious that if $q = q(x,y)$ is constant along Finslerian geodesics, i.e., $q' = 0$ then F is a Landsberg metric. \hfill \Box

Corollary 3.2. Let (M,F) be a semi-C-reducible Finsler manifold. Suppose that $q = q(x,y)$ is constant along Finslerian geodesics. Then F is a weakly Landsberg metric if and only if it is a Landsberg metric.

Proof. According to Theorem 1.1, a weakly Landsberg semi-C-reducible metric is a Landsberg metric if and only if the following holds

$$0 = b'_i = \frac{q'}{3C^2}I_i + \frac{q}{3C^2}J_mJ_i - \frac{q}{3C^4}(I^mJ_m + J^mI_m)I_i \quad (9)$$

Thus $b'_i = 0$ if and only if $q' = 0$. \hfill \Box

Acknowledgments. The authors would like to express their gratitude to the referees for careful reading and helpful comments.

References

