On C3-Like Finsler Metrics

A. Tayebia and E. Peyghanb,∗

Department of Mathematics, Faculty of Science, Qom University, Qom, Iran
Department of Mathematics, Faculty of Science, Arak University, Arak, Iran

Abstract. In this paper, we study the class of C3-like Finsler metrics which contains the class of semi-C-reducible Finsler metric. We find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent.

Keywords: Finsler metric, C3-like metric, semi-C-reducible metric.

1. Introduction

Various interesting special forms of Cartan and Landsberg tensors have been obtained by some Finslerians [3,5,14,16]. The Finsler spaces having such special forms have been called C-reducible, P-reducible, general relatively isotropic Landsberg, and etc [6,7]. In [5], Matsumoto introduced the notion of C-reducible Finsler metrics and proved that any Randers metric is C-reducible. Later on, Matsumoto-Hojo proves that the converse is true too [2]. A Randers metric \(F = \alpha + \beta \) is just a Riemannian metric \(\alpha \) perturbated by a one form \(\beta \), which has important applications both in mathematics and physics [15].

Let us remark some important curvatures in Finsler geometry. Let \((M, F)\) be a Finsler manifold. The second derivatives of \(\frac{1}{2} F^2 \) at \(y \in T_x M_0 \) is an inner product \(g_y \) on \(T_x M \). The third order derivatives of \(\frac{1}{2} F^2 \) at \(y \in T_x M_0 \) is a symmetric trilinear forms \(C_y \) on \(T_x M \). We call \(g_y \) and \(C_y \) the fundamental

∗Corresponding Author

E-mail addresses: akbar.tayebi@gmail.com (A. Tayebi), epeyghan@gmail.com (E. Peyghan)

Received 22 October 2010; Accepted 17 March 2011
©2012 Academic Center for Education, Culture and Research TMU
form and the Cartan torsion, respectively. The rate of change of C_y along geodesics is the Landsberg curvature L_y on $T_x M$ for any $y \in T_x M_0$. F is said to be Landsbergian if $L = 0$.

In [11], Prasad-Singh introduced a new class of Finsler spaces named by C3-like spaces which contains the class of semi-C-reducible spaces, as special case (see [8], [9], [10]). A Finsler metric F is called C3-like if its Cartan tensor is given by
\begin{equation}
C_{ijk} = \{a_i h_{jk} + a_j h_{ki} + a_k h_{ij}\} + \{b_i I_j I_k + I_i b_j I_k + I_j b_k\},
\end{equation}
where $a_i = a_i(x, y)$ and $b_i = b_i(x, y)$ are homogeneous scalar functions on TM of degree -1 and 1, respectively. We have some special cases as follows: (i) if $a_i = 0$, then we have $C_{ijk} = \{b_i I_j I_k + I_i b_j I_k + I_j b_k\}$, contracting it with g^{ij} implies that $b_i = 1/(3C^2)I_i$. Then F is a C2-like metric; (ii) if $b_i = 0$, then we have $C_{ijk} = \{a_i h_{jk} + a_j h_{ki} + a_k h_{ij}\}$, contracting it with g^{ij} implies that $a_i = 1/(n+1)I_i$. Then F is a C-reducible metric; (iii) if $a_i = p/(n+1)I_i$ and $b_i = q/(3C^2)I_i$, where $p = p(x, y)$ and $q = q(x, y)$ are scalar functions on TM, then F is a semi-C-reducible metric. It is remarkable that, in [3] Matsumoto-Shibata introduced the notion of semi-C-reducibility and proved that every non-Riemannian (α, β)-metric on a manifold M of dimension $n \geq 3$ is semi-C-reducible. Therefore the study of the class of C3-like Finsler spaces will enhance our understanding of the geometric meaning of (α, β)-metrics.

In this paper, we study C3-like metrics and find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent. More precisely, we prove the following.

Theorem 1.1. Let (M, F) be a C3-like Finsler manifold. Suppose that $b_i = b_i(x, y)$ is constant along Finslerian geodesics. Then F is a weakly Landsberg metric if and only if it is a Landsberg metric.

There are many connections in Finsler geometry [12][13]. In this paper, we use the Berwald connection and the h- and v-covariant derivatives of a Finsler tensor field are denoted by “$|$” and “∇” respectively.

2. Preliminaries

Let M be an n-dimensional C^∞ manifold. Denote by $T_x M$ the tangent space at $x \in M$, and by $TM = \cup_{x \in M} T_x M$ the tangent bundle of M.

A Finsler metric on M is a function $F : TM \to [0, \infty)$ which has the following properties:
(i) F is C^∞ on $TM_0 := TM \setminus \{0\}$;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM,
(iii) for each $y \in T_x M$, the following quadratic form g_y on $T_x M$ is positive definite,
\[g_y(u, v) := \frac{1}{2} \left[F^2(y + su + tv) \right]_{s, t = 0}, \quad u, v \in T_x M. \]
Let \(x \in M \) and \(F_x := F|_{T_xM} \). To measure the non-Euclidean feature of \(F_x \), define \(C_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R} \) by

\[
C_y(u, v, w) := \frac{1}{2} \frac{d}{dt} \left[g_{y+tw}(u, v) \right]_{t=0}, \quad u, v, w \in T_xM.
\]

The family \(C := \{C_y\}_{y \in TM_0} \) is called the Cartan torsion. It is well known that \(C=0 \) if and only if \(F \) is Riemannian. For \(y \in T_xM_0 \), define mean Cartan torsion \(I_y \) by \(I_y(u) := I_i(y)u^i \), where \(I_i := g^{jk}C_{ijk} \) and \(u = u^i \frac{\partial}{\partial x^i}|_x \). By Diecke Theorem, \(F \) is Riemannian if and only if \(I_y = 0 \).

For \(y \in T_xM_0 \), define the Matsumoto torsion \(M_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R} \) by \(M_y(u, v, w) := M_{ijk}(y)u^i w^j w^k \) where

\[
M_{ijk} := C_{ijk} - \frac{1}{n+1} \{I_i h_{jk} + I_j h_{ik} + I_k h_{ij}\},
\]

and \(h_{ij} := FF_{y^i y^j} = g_{ij} - \frac{1}{n} g_{ip} g_{jq} y^p y^q \) is the angular metric. A Finsler metric \(F \) is said to be \(C \)-reducible if \(M_y = 0 \). This quantity is introduced by Matsumoto [5]. Matsumoto proves that every Randers metric satisfies that \(M_y = 0 \). A Randers metric \(F = \alpha + \beta \) on a manifold \(M \) is just a Riemannian metric \(\alpha = \sqrt{a_{ij} y^i y^j} \) perturbed by a one form \(\beta = b_i(x) y^i \) on \(M \) such that \(\| \beta \|_\alpha < 1 \). Later on, Matsumoto-Hôjô proves that the converse is true too.

Lemma 2.1. ([2]) A Finsler metric \(F \) on a manifold of dimension \(n \geq 3 \) is a Randers metric if and only if \(M_y = 0 \), \(\forall y \in TM_0 \).

A Finsler metric is called semi-C-reducible if its Cartan tensor is given by

\[
C_{ijk} = \frac{p}{1+n} \{ h_{ij} I_k + h_{jkl} f + h_{ikl} f \} + \frac{q}{n+2} I_i J_j I_k,
\]

where \(p = p(x, y) \) and \(q = q(x, y) \) are scalar function on \(TM \) and \(C^2 = I^2 I_i \). Multiplying the definition of semi-C-reducibility with \(g^{ik} \) shows that \(p \) and \(q \) must satisfy \(p + q = 1 \). If \(p = 0 \), then \(F \) is called \(C_2 \)-like metric. In [3], Matsumoto and Shibata proved that every \((\alpha, \beta)\)-metric is semi-C-reducible. Let us remark that an \((\alpha, \beta)\)-metric is a Finsler metric on \(M \) defined by \(F := \alpha \phi(s) \), where \(s = \beta/\alpha \), \(\phi(s) \) is a \(C^\infty \) function on the \((-b_0, b_0)\) with certain regularity, \(\alpha \) is a Riemannian metric and \(\beta \) is a 1-form on \(M \) [4].

Theorem 2.2. ([3][4]) Let \(F = \phi(s) \alpha \) be a non-Riemannian \((\alpha, \beta)\)-metric on a manifold \(M \) of dimension \(n \geq 3 \). Then \(F \) is semi-C-reducible.

The horizontal covariant derivatives of \(C \) along geodesics give rise to the Landsberg curvature \(L_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R} \) defined by

\[
L_y(u, v, w) := L_{ijk}(y)u^i w^j w^k,
\]

where \(L_{ijk} := C_{ijk|y^s} u = u^i \frac{\partial}{\partial x^s}|_x \), \(v = v^i \frac{\partial}{\partial x^i}|_x \) and \(w = w^i \frac{\partial}{\partial x^i}|_x \). The family \(L := \{L_y\}_{y \in TM_0} \) is called the Landsberg curvature. A Finsler metric is called a Landsberg metric if \(L = 0 \).
3. Proof of Theorem 1.1

In this section, we are going to prove the Theorem 1.1.

Proof of Theorem 1.1: F is C^3-like metric

(2)
$$C_{ijk} = \{a_i h_{jk} + a_j h_{ki} + a_k h_{ij}\} + \{b_i I_j I_k + b_j I_i I_k + b_i I_j I_k\},$$

where $a_i = a_i(x, y)$ and $b_i = b_i(x, y)$ are scalar functions on TM. Multiplying (2) with g^{ij} implies that

(3)
$$a_i = \frac{1}{n+1}\{(1 - 2I^m b_m)I_i - C^2 b_i\},$$

where $C^2 = I^m I_m$. By plugging (3) in (2), we get

(4)
$$C_{ijk} = \frac{1}{n+1}\{I_i h_{jk} + I_j h_{ki} + I_k h_{ij}\} - \frac{2I^m b_m}{n+1}\{I_i h_{jk} + I_j h_{ki} + I_k h_{ij}\}$$

or equivalently

(5)
$$M_{ijk} = -\frac{2I^m b_m}{n+1}\{I_i h_{jk} + I_j h_{ki} + I_k h_{ij}\} - \frac{C^2}{n+1}\{b_i h_{jk} + b_j h_{ki} + b_k h_{ij}\}$$

By taking a horizontal derivation of (5), we have

(6)
$$\tilde{M}_{ijk} = -\frac{2}{n+1}\{(J^m b_m + I^m b'_m)\{I_i h_{jk} + I_j h_{ki} + I_k h_{ij}\}$$

$$- \frac{2I^m b_m}{n+1}\{J_i h_{jk} + J_j h_{ki} + J_k h_{ij}\} - \frac{C^2}{n+1}\{b'_i h_{jk} + b'_j h_{ki} + b'_k h_{ij}\}$$

$$- \frac{1}{n+1}\{J^m I_m + I^m J_m\}\{b_i h_{jk} + b_j h_{ki} + b_k h_{ij}\}$$

$$+ \{b_i J_j I_k + b_i J_k I_j + b_j J_i I_k + b_j J_i I_k + b_k J_i J_j + b_k J_i J_j\}$$

where $b'_i = b_{i|x}$ and

$$\tilde{M}_{ijk} = L_{ijk} - \frac{1}{n+1}\{J_i h_{jk} + J_j h_{ki} + J_k h_{ij}\}.$$

Let F be a weakly Landsberg metric. Since b_i is constant along geodesics, i.e.,

$b'_i = 0$, then (6) reduces to following

(7)
$$L_{ijk} = \frac{1}{n+1}\{J_i h_{jk} + J_j h_{ki} + J_k h_{ij}\} = 0.$$

This means that F is a Landsberg metric. \hfill \square

Corollary 3.1. Let (M, F) be a weakly Landsberg C^3-like Finsler manifold. Suppose that $q = q(x, y)$ is constant along Finslerian geodesics. Then F is a Landsberg metric.
Proof. Since F is weakly Landsberg, then (6) reduces to following
\begin{equation}
L_{ijk} = -\frac{C^2}{n+1}\{b'_ih_{jk} + b'_jh_{ki} + b'_kh_{ij}\} + \{b'_iJ_JI_k + b'_jI_Ik + b'_kI_Ij\}.
\end{equation}
It is obvious that if $q = q(x,y)$ is constant along Finslerian geodesics, i.e., $q' = 0$ then F is a Landsberg metric. □

Corollary 3.2. Let (M,F) be a semi-C-reducible Finsler manifold. Suppose that $q = q(x,y)$ is constant along Finslerian geodesics. Then F is a weakly Landsberg metric if and only if it is a Landsberg metric.

Proof. According to Theorem 1.1, a weakly Landsberg semi-C-reducible metric is a Landsberg metric if and only if the following holds
\begin{equation}
0 = b'_i = \frac{q'}{3C^2}I_I + \frac{q}{3C^2}I_i - \frac{q}{3C^2}(I^mI_m + J^mI_m)I_i
\end{equation}
Thus $b'_i = 0$ if and only if $q' = 0$. □

Acknowledgments. The authors would like to express their gratitude to the referees for careful reading and helpful comments.

REFERENCES

