پروپوزال نویسی
آموزش مهارت های کاربردی در تدوین و چاپ مقاله
اصول تنظیم قراردادها

پیش
Fungal Peritonitis in Iranian Children on Continuous Ambulatory Peritoneal Dialysis
A National Experience

Nakysa Hooman,1 Abbas Madani,2 Mostafa Sharifian Dorcheh,3 Ali Mahdavi,1 Ali Derakhshan,4 Alaleh Gheissari,5 Seyed Taher Esfahani,2 Hassan Otoukesh,1 Masoumeh Mohkam,3 Mohammad Hossein Falahzadeh,4 Ghamar Hosseini Al Hashemi,4 Afshin Azir,5 Alireza Merikhi,5 Fatemeh Gholikhani,3 Elahe Latif,2 Shirin Karimi,5 Talieh Zakavat,4 Parvin Mohseni,2 Neamatollah Ataei,2 Azar Nickavar,1 Mitra Basiratnia4

Introduction. Fungal peritonitis (FP), causing catheter obstruction, dialysis failure, and peritoneal dysfunction, is a rare but serious complication of peritoneal dialysis. In this study, the frequency and risk factors of FP are evaluated in children who underwent peritoneal dialysis.

Materials and Methods. A retrospective multicenter study was performed at the 5 pediatric peritoneal dialysis centers in Iran from 1971 to 2006, and FP episodes among 93 children were reviewed. Risk ratios were calculated for the clinical and demographic variables to determine the risk factors of FP.

Results. Ninety-three children aged 39 months on average were included in study. Sixteen out of 155 episodes of peritonitis were fungi infections, all by Candida albicans. The risk of FP was higher in those with relapsing bacterial peritonitis (P = .009). Also, all of the patients had received antibiotics within the 1 month prior to the development of FP. Catheters were removed in all patients after 1 to 7 days of developing FP. Six out of 12 patients had catheter obstruction and peritoneal loss after the treatment and 5 died due to infection.

Conclusions. Fungal peritonitis, accompanied by high morbidity and mortality in children should be reduced by prevention of bacterial peritonitis. Early removal of catheter after recognition of FP should be considered.

INTRODUCTION

Fungal Peritonitis (FP) is a rare but serious complication of continuous ambulatory peritoneal dialysis (CAPD). The reported incidence is 3% to 6% in children,1,3 and 1% to 15% in adults.4,8 It leads to catheter obstruction, abscess formation, peritoneal adhesion dialysis failure, peritoneal dysfunction and death.4,7,9

The most important known risk factors of FP are previous bacterial peritonitis, prior use of antibiotics, and previous peritonitis caused by gram-negative organisms.2,7,10 Early catheter removal and antifungal...
therapy have been proposed for treatment this complication, however, the efficacy of nystatin for prophylaxis is still debatable. The aim of this study was to determine the prevalence, possible risk factors, and the outcome of FP in children receiving CAPD.

MATERIALS AND METHODS
A retrospective multicenter study was performed at all the 5 centers for pediatric peritoneal dialysis in Iran (Ali-Asghar Children’s Hospital, Children’s Hospital Medical Center, and Mofid Children’s Hospital in Tehran; Namazi Hospital in Shiraz; and Alzahra Hospital in Isfehan) with 93 pediatric patients from 1971 to 2006. They were 43 girls and 50 boys. The hospital records of the patients younger than 16 years who had been receiving CAPD were reviewed and cases of FP were selected for further investigation. Fungal peritonitis was diagnosed by the recorded clinical signs of peritonitis and at least 2 documented positive cultures of dialysate fluids for fungi. Fungi were cultured on blood agar in 37°C for at least 7 days and fungal colonies were diagnosed by light microscopy at all centers. Relapsing bacterial peritonitis was defined as an infection with the same causative organism within 2 weeks after completion of an antibiotic treatment course and documentation of at least 1 negative dialysate culture. Risk ratios (RRs) were calculated to determine the risk factors of FP in children with CAPD. Statistical analyses were performed by Fisher exact test. A P value less than .05 was considered significant.

RESULTS
A total of 866.46 months had been taken for the treatment of peritonitis episodes in the children on CAPD in the 5 centers. Sixteen out of 155 episodes of the peritonitis (10.3%) were fungal, all caused by Candida albicans, which occurred in 12 patients (12.9%). The Table shows the clinical characteristics of 12 patients whose dialysate fluid was positive for yeasts or Candida. The median age of these children was 27 months and half of them were girls. The underlying kidney diseases were cystinosis in 2 patients, dysplastic kidney disease in 2, hemolytic uremic syndrome in 2, multicystic dysplastic kidney/nephronophtisis in 2, diffuse mesencephal sclerosis in 1, polycystic kidney disease in 1, and asphyxic thoracic syndrome in 1. The etiology was unknown in 1 patient.

The patients had neither history of the gastrostomy tube insertion nor of immunosuppressive therapy. In 4 patients, the FP cases were the first peritonitis episodes that began within 3 days to 12 months after starting CAPD. Several episodes of bacterial

<table>
<thead>
<tr>
<th>Episode of FP</th>
<th>Sex</th>
<th>Age, mo</th>
<th>Weight, kg</th>
<th>Duration of CAPD, mo</th>
<th>Peritonitis Episodes Prior to FP</th>
<th>Time of FP, mo</th>
<th>Time of Catheter Removal, mo</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>36</td>
<td>10.0</td>
<td>0.5</td>
<td>2</td>
<td>.1</td>
<td>0.5</td>
<td>Deceased</td>
</tr>
<tr>
<td>2†</td>
<td>B</td>
<td>12</td>
<td>6.0</td>
<td>12</td>
<td>0</td>
<td>...</td>
<td>...</td>
<td>CAPD</td>
</tr>
<tr>
<td>3†</td>
<td>B</td>
<td>27</td>
<td>8.0</td>
<td>27</td>
<td>0</td>
<td>...</td>
<td>...</td>
<td>CAPD</td>
</tr>
<tr>
<td>4†</td>
<td>B</td>
<td>28</td>
<td>9.0</td>
<td>28.6</td>
<td>1‡</td>
<td>28.6</td>
<td>...</td>
<td>No dialysis modality</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>12</td>
<td>7.5</td>
<td>0.74</td>
<td>0</td>
<td>...</td>
<td>0.5</td>
<td>Recovery of native kidney</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>55</td>
<td>13.3</td>
<td>0.4</td>
<td>0</td>
<td>...</td>
<td>0.4</td>
<td>Hemodialysis</td>
</tr>
<tr>
<td>7</td>
<td>G</td>
<td>48</td>
<td>10.5</td>
<td>3</td>
<td>2‡</td>
<td>1</td>
<td>...</td>
<td>Hemodialysis</td>
</tr>
<tr>
<td>8</td>
<td>G</td>
<td>28</td>
<td>10.0</td>
<td>1.4</td>
<td>2‡</td>
<td>.4</td>
<td>0.5</td>
<td>Deceased</td>
</tr>
<tr>
<td>9</td>
<td>G</td>
<td>16</td>
<td>6.0</td>
<td>3.1</td>
<td>1</td>
<td>.3</td>
<td>1.5</td>
<td>Deceased</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>2</td>
<td>3.3</td>
<td>7.2</td>
<td>4‡</td>
<td>.2</td>
<td>1</td>
<td>Deceased</td>
</tr>
<tr>
<td>11§</td>
<td>B</td>
<td>24</td>
<td>10.5</td>
<td>0.7</td>
<td>0</td>
<td>...</td>
<td>...</td>
<td>CAPD</td>
</tr>
<tr>
<td>12§</td>
<td>B</td>
<td>29</td>
<td>11.0</td>
<td>5.7</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>Hemodialysis</td>
</tr>
<tr>
<td>13</td>
<td>G</td>
<td>84</td>
<td>13.5</td>
<td>4.6</td>
<td>2</td>
<td>2.3</td>
<td>3</td>
<td>Hemodialysis</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>9</td>
<td>10.5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>...</td>
<td>CAPD</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
<td>11</td>
<td>6.0</td>
<td>24</td>
<td>5</td>
<td>...</td>
<td>2.5</td>
<td>Deceased</td>
</tr>
<tr>
<td>16</td>
<td>G</td>
<td>11</td>
<td>6.0</td>
<td>24</td>
<td>5</td>
<td>...</td>
<td>2.5</td>
<td>Deceased</td>
</tr>
</tbody>
</table>

| FP indicates fungal peritonitis; CAPD, continuous ambulatory peritoneal dialysis; G, girl; and B, boy. Ellipses indicate the missed data. §The last episode occurred simultaneously with the FP. †±, ‖These episodes occurred in a same patient.
peritonitis had happened in the earlier months before FP, including 5 episodes by gram-negative bacteria, 3 by gram-positives, and 2 with negative culture results. All episodes of FP had occurred after 1 month being treated with antibiotics. Peritonitis rate prior to fungal infection was lower than that as the overall cases (0.09 versus 0.17 episodes per patient-month).

Six patients were treated with amphotericin B, intraperitoneally or intravenously, for 2 to 3 weeks and fluconazole was given to only 2 patients as an adjuvant therapy. Catheters were removed in all patients after 1 to 7 days of developing FP. Half of the patients were terminated to catheter obstruction and loss of peritoneal access, and 5 died due to infection.

Patients in whom the onset of the first bacterial peritonitis had occurred earlier than 1 month from the start of dialysis had a greater risk of developing FP (RR = 4.70; 95% confidence interval [CI], 1.37 to 16.38; \(P = .009 \)). Prior use of antibiotics was a factor present in all of the patients (\(P = .007 \)). The risk of FP was not significantly higher in the patients with relapsing peritonitis (RR = 1.70; 95% CI, 0.50 to 5.30; \(P = .37 \)), age less than 5 years (RR = 3.45; 95% CI, 0.46 to 24.9; \(P = .28 \)), dialysis in the first week of catheter implantation (RR = 4.10; 95% CI, 0.55 to 30.17; \(P = .16 \)), and straight type of Tenckhoff catheter (RR = 3.15; 95% CI, 0.73 to 13.59; \(P = .11 \)).

DISCUSSION

Fungal peritonitis is a rare complication of CAPD that is accompanied by high morbidity and mortality rates. Although in a large multicenter survey, Warady and colleagues found the incidences of FP in both children and adults to be similar, in our patients, the frequency of pediatric FP was five times as higher as that in other studies.13 Younger age is associated with a higher risk of FP. This might be due to higher risk of bacterial peritonitis predisposing to FP.2,19-21 However, our limited data failed to show the influence of age.

Previous studies have suggested the role of recent bacterial infection, especially with gram-negative organisms, in the development of FP.27,10 We only found a significant higher RR of FP in those with bacterial peritonitis during the first month of starting CAPD. Albeit nonsignificant, the RRS were high for both early usage of catheter and straight type of Tenckhoff catheter. These may be secondary to the increase risk of bacterial peritonitis. Reviewing the literature, no relation was found between the type of the catheter and the risk of FP. However, twin-bag disconnect system has been reported to significantly reduce the risk of this infection.22 Peritoneal dialysis catheters are susceptible to the development of infections because of the frequent manipulating required and high dextrose concentration of the indwelling dialysis fluid.20 Candida species are able to grow into the dialysis catheter and form a surrounding biofilm. The incidence of FP has been reported lower among patients on automated peritoneal dialysis, because of fewer numbers of disconnections.23 However, Warady and colleagues reported a similar rate of FP in patients on CAPD and automated peritoneal dialysis.3

In the current study, Candida species were the responsible fungi for one-third of first episodes of peritonitis. The risk of candidiasis is enhanced by indwelling catheter, abdominal surgery, hyperglycemia, prolonged hospitalization, broad-spectrum antimicrobial therapy, malnutrition, and azotemia.24 Most of the cases in this study had failure to thrive and all had the history of prior antibiotic administration. Antibiotics suppress the normal bacterial flora of the skin, and thus, allow the overgrowth of Candida. In addition, some antibiotics cause a decrease in neutrophils that can kill Candida (eg, sulfonamides) or diminish the neutrophils’ phagocytosis potential (eg, aminoglycosides).25

Half of our patients died and the remainder had to change their maintenance dialysis into to hemodialysis (because of outflow obstruction or loss of peritoneal adequacy) or could not have any other modalities (in cases of very small children). This figure shows the high mortality and morbidity of FP that could have been preventable by rational usage of antibiotics, improving nutrition by consulting specialized nutritionists, feeding by gastrostomy tube in malnourished infants, not changing the normal bacterial flora that prevent Candida colonization, using infrequent disconnection system of peritoneal dialysis for very young children and infants, using newer nondextrose dialysates, and early removal of the catheter. The recommended treatment protocol of FP in 2000 was either removing catheter and
maintaining patient on hemodialysis for at least 4
to 6 weeks or leaving original unobstructed catheter
in place while administering antifungal agents
intraperitoneally or intravenously for at least 4
to 7 days. The catheter would have been removed
in the case of no response to the treatment. In
contrast, the protocol in 2005 has changed by
emphasizing on early removal of the catheter in
FP. Lack of a substitution of CAPD for infants and
young children with a weight less than or equal to
10 kg was the reason of choosing the second option
of 2000 protocol. The few numbers of children
and absence of a uniform protocol of therapy in
our series were the limitations in this study that
preclude a more definite conclusion.

CONCLUSIONS
Fungal peritonitis is accompanied by high
morbidity and mortality in children who receive
CAPD and should be reduced by prevention of
bacterial peritonitis. Prompt removal of catheter
after recognition of FP should be considered.

CONFICT OF INTEREST
None declared.

FUNDING SUPPORT
This study was supported by Iran University of
Medical Sciences (Grant number, 552).

REFERENCES
1. Bibashi E, Memmos D, Kokoline E, Tsakiris D, Sofianou
D, Papadimitriou M. Fungal peritonitis complicating
peritoneal dialysis during an 11-year period: report of 46
2. Raaijmakers R, Schroder C, Monnens L, Cornelissen
E, Warris A. Fungal peritonitis in children on peritoneal
3. Warady BA, Bashir M, Donaldson LA. Fungal peritonitis
in children receiving peritoneal dialysis: a report of the
4. Prasad KN, Prasad N, Gupta A, Sharma RK, Verma AK,
Ayyagari A. Fungal peritonitis in patients on continuous
ambulatory peritoneal dialysis: a single centre Indian
5. Prasad N, Gupta A. Fungal peritonitis in peritoneal dialysis
peritonitis during continuous ambulatory peritoneal
of fungal peritonitis in peritoneal dialysis: analysis of a 9-
year experience of fungal peritonitis in a single center. Am
for fungal peritonitis in patients on continuous ambulatory
peritoneal dialysis: six years’ experience. Am J Kidney
9. Wong PN, Mak SK, Lo KY, Tong GM, Wong AK.
A retrospective study of seven cases of Candida
parapsilosis peritonitis in CAPD patients: the therapeutic
10. Bren A. Fungal peritonitis in patients on continuous
ambulatory peritoneal dialysis. Eur J Clin Microbiol Infect
IK. Treatment of fungal peritonitis complicating continuous
ambulatory peritoneal dialysis with oral fluconazole: a series
12. Cheng IK, Fang GX, Chan TM, Chan PC, Chan MK.
Fungal peritonitis complicating peritoneal dialysis:
13. Keogh JAB, Carr ME, Murray F, McEvoy M, Grant G,
Keane CJ. Treatment of fungal peritonitis in CAPD
14. Lee SH, Chiang SS, Hsieh SJ, Shen HM. Successful
treatment of fungal peritonitis with intracatheter antifungal
15. Manzano-Gayosso P, Hernandez-Hernandez F, Mendez-
Tovar LJ, Gonzalez-Monroy J, Lopez-Martinez R. Fungal
peritonitis in 15 patients on continuous ambulatory
16. Nagappan R, Collins JF, Lee WT. Fungal peritonitis in
continuous ambulatory peritoneal dialysis--the Auckland
17. Thodis E, Vas SI, Bargman JM, Singhal M, Chu M,
Oreopoulos DG. Nystatin prophylaxis: its inability to
prevent fungal peritonitis in patients on continuous
peritonitis in a large chronic peritoneal dialysis population:
19. Hogg RJ, Arant BS Jr, Houser MT. Candida peritonitis in
children on continuous ambulatory peritoneal dialysis. Int
1980;97:298-300.
21. Otukesh H, Hooman N, and Ghaisari A. Peritonitis in
continuous ambulatory dialysis in children in Ali Asghar
22. Chen CM, Ho MW, Yu WL, Wang JH. Fungal peritonitis in
peritoneal dialysis patients: effect of fluconazole treatment
and use of the twin-bag disconnect system. J Microbiol
23. Johnson RJ, Ramsey PG, Gallagher N, Ahmad S. Fungal
peritonitis in patients on peritoneal dialysis: incidence, clinical
factors for nosocomial candidemia: a case-control study in

Correspondence to:
Nakysa Hooman, MD
Division of Pediatric Nephrology, Ali-Asghar Children Hospital, Vahid Dastgerdi St, Modares Hwy, Tehran 1919816766, Iran
Tel: +98 21 2222 2041-5
Fax: +98 21 2222 0063
E-mail: nakisa45@yahoo.com

Received May 2007
Revised June 2007
Accepted June 2007
۳۰ درصد تخفیف نوروزی ویژه کارگاه‌ها و فیلم‌های آموزشی

اصول تنظیم قراردادها

پروپوزال نویسی

آموزش مهارت های کاربردی در تدوین و چاپ مقاله