Lameness in dairy Cows

Roger Blowey¹, FRCVS
Seifollah Dehghani Nazhvani²*, MVSc

¹ Wood Veterinary Group, St Oswalds Road, Gloucester, GL2 8JG, UK
² Department of Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.

Abstract

Review- This paper intended to review the lameness in dairy cattle. But it was necessary to have an overview about the hoof anatomical structure, its growth and overgrowth properties. Most common causes of lameness such as laminitis and its different clinical form or presentation such as sole ulcers, toe ulcers, white line disorders, sole and white line hemorrhages have been reviewed and discussed. The prevention of laminitis and the major factors involved in damaging the corium in dairy cattle which have been subdivided into the headings of calving, diet, excess standing and general management are discussed in detail.

Keywords: Cattle, Lameness, Laminitis, White Line Disease, Sole Ulcer, Sole Hemorrhage.

* Corresponding Author:
Seifollah Dehghani Nazhvani, MVSc
Department of Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
E-mail address: sdehghan04@yahoo.com
Introduction

Lameness remains a major welfare problem in dairy cattle worldwide. Poor health is frequently associated with painful lesions. Such lesions frequently arise from damage to the underlying dermal and epidermal soft tissues causing impaired production of the horn on the external surface of the claw\(^1\). In the UK the average incidence is around 50 cases per 100 cows per year, with much higher incidences being seen in some free-stall (cubicle) housed cattle. Because of its effect on subsequent fertility and production, the cost of a single case of lameness is estimated to be around £200, although this will vary enormously from case to case depending on severity. The prevention of any disease must be based on a thorough understanding of its etiology\(^2\). Epidemiological pattern of lameness in dairies in Tehran and Vicinity have been investigated\(^3\). Digital dermatitis have been reported as an epidemic in dairies of Iran\(^4\). Scattered studies on lameness in cattle have been performed in Shiraz area\(^5\). Clinical and histopathological study of chronic laminitis was reported in a herd of dairy cattle\(^6\). Digital and hoof vascular changes have been studied by angiography in cattle affected by laminitis\(^7\). Although attempt have been made to disseminate the knowledge of hoof trimming and lameness control it seems that few Veterinarians have sound knowledge of lameness diagnosis and control and few spend time in dairies to do functional and curative hoof trimming. This paper discusses the structure of the foot, the pathogenesis of hoof lesions, in other words how dysfunction of the corium (‘coriosis’) leads to the production of defective hoof horn and finally the etiology of lameness, viz. the on-farm factors that lead to defective hoof formation.

The Structure of the Foot

The foot consists of two digits, the outer or lateral claw and the inner or medial claw. In hind feet the lateral claw is larger than the medial and is the major weight-bearing surface. In front feet this is reversed, with the inner claw being the larger and weight-bearing. This is thought to be an important reason why the majority of lesions occur in the outer claw of hind feet and the inner claw of front feet. Dermal and epidermal tissues of the claw are produced from embryonic mesoderm and ectoderm respectively. Interactions between these tissues appears to be essential for normal development and function of epidermal cells in integumental tissues\(^1\).

Each claw consists of three tissue components, namely hoof, corium and the bone.

The hoof: Subdivided into the wall, the white line, the sole and the heel. It provides the hard outer casing of the foot.

The corium: Also known as the ‘quick’, the corium is a support tissue that provides nutrients for the hoof and bones of the foot. Papillary corium, which produces hoof horn, is present at the coronary band and over the sole; laminar corium covers the lower half of the wall; and at the heel the corium is modified to form the digital cushion

The bones
The pedal bone and the navicular bone.

The wall of the hoof is extruded from the papillary corium from the hoof/skin junction of the coronary band down to the first half of the wall. It passes slowly over the laminar corium at approximately 5mm per month. The sole is a separate structure, produced by the papillary corium of the sole. Where the wall and the sole join there is a cemented junction known as the
White line. Whereas the hoof of the wall and sole consists of tubular horn, viz. hoof containing reinforcing bars, the white line contains only cellular cement. Being a cemented junction the white line is a point of weakness and once damaged becomes a common place for penetration by stones and other foreign bodies. There are anatomical differences in the digital cushion between heifers and cows. It is therefore important to give heifers enough time to adapt to the new housing conditions of dairy cows 7.

Hoof Overgrowth

Although often omitted from texts on lameness, hoof overgrowth is probably one of the most common factors leading to discomfort when walking (fig.1). Overgrowth occurs primarily at the toe. This leads to an elevation of the toe, rotating the claw backwards. The angle of the anterior wall changes from a normal of 45° to a slope of 30° and this places additional weight on the heel. Cows with overgrown claws have a poorer gait and walk with significant discomfort compared to well-trimmed animals. The horn producing and proliferating epidermal basal cells are supplied with nutrients and oxygen from the blood vessel in the underlying dermis (corium). The basal cell layer at the dermal-epidermal junction degenerates first. The deterioration of the dermal-epidermal link leads to a failure of the claw's suspensory apparatus. The link begins to separate and the whole foot sinks within the horn capsule8. In addition, extra weight bearing on the rear edge of the pedal bone may predispose to sole ulcers. It is vital that both veterinarians and herdsmen have a good understanding of the anatomy of hoof overgrowth before embarking on hoof trimming2,9.

Figure 1. Overgrown hoof in a Holstein dairy cow. The average length of hoof in this cow was 22±3 cm. Note the lateral and medial claws in both hind and fore legs are overgrown.

Figure 2. Sole ulcer in medial claw and white line haemorrhage, (blood clot) in both medial and lateral claw of the hind leg of a Holstein dairy cow in a dairy herd having chronic sub clinical laminitis syndrome.
Sole Ulcers

Sole ulcer is a continuous opening in the sole horn that exposes the corium. The typical site is the rear middle part of the sole which corresponds to rear part of the pedal bone. The prognosis for the sole ulcers depends on the damage to the horn producing tissue and the condition of the outer claw. The primary cause of a sole ulcer is a pinching of the corium between the flexor tuberosity of the pedal bone above and the hard horn of the sole beneath. Pinching of the corium produces bleeding and blood mixed with the horn leads to a weakening of hoof strength. As the average sole is 10mm thick, and as hoof grows at 5mm per month, haemorrhage is not seen on the surface of the sole until some 2–3 months later. This is often referred to as bruising. Sometimes the compression and damage to the corium can be so severe that horn formation is totally disrupted. This then leads to ‘hole’ through the hoof and onto the corium of the sole beneath, in other words a sole ulcer (fig. 2). In the normal foot the pedal bone is suspended within the hoof by the laminae. If the corium becomes inflamed, viz. if laminitis develops, then this suspension is lost and the pedal bone sinks onto the floor of the hoof. Sinkage of the distal phalanx compresses the corium in the sole and heel and further episodes of capillary damage, haemorrhage, thrombosis, cellular inflammatory reaction and finally ischemic necrosis results. Chronic oedema combined with the compression from the weight of the animal will present a threat to animal similar to actual sinkage\(^8\),\(^10\). It also explains why cows that have been affected by sole ulcers or white line disease in one lactation they are at least three times more likely to develop lameness in subsequent lactations. It is therefore very important to look after heifers as they enter the dairy herd. Treatment consists of removing all under run and damaged horn and preferably applying a block, for example a Cowslip (Giltspur Ltd.), to the sound claw to minimize weight bearing on the ulcer site. Recent data has shown that removing weight bearing from the affected claw by applying a block to the sound claw doubles the rate of healing of sole ulcers\(^11\).

Toe Ulcers

Occurs when the sole is worn too thin at the toe or the toe drops inside the horn due to laminitis, or if the toe is accidentally trimmed too thin. Toe ulcers will always require an orthopedic block on the opposite claw.

White Line Disorders

White line disease starts with fissures due to haemorrhage and poor quality horn formation. The white line is a cemented junction between the wall and the sole of the hoof. Both the wall and the sole consist of reinforced tubular horn, whereas the white line is ‘cement’ only and as such it is an inherent point of weakness\(^11\),\(^12\). The white line can be further weakened by aspects of management, housing, feeding and particularly by calving. These points are referred to later. Once weakened, it is easy for a stone or dirt to become impacted into the white line cement. The foreign body may act as a ‘wedge’ and further increase the fissure within the white line until it penetrates the corium. Bacteria carried in will multiply in the corium and it is pressure from the pus that produces lameness. Infection escapes from the corium by taking the line of least resistance. This usually leads to a discharge through the softer horn of the heel. Sometimes pus tracks along the laminae of the wall to discharge at the coronary band. If infection accumulates

\[\text{www.SID.ir}\]
in the toe, then lameness can be particularly intense because there is no route for drainage. Treatment consists of draining the abscess, and removing all the under-run horn to expose the underlying corium. New horn will then grow from that corium. Ideally a block should be applied to the sound claw to remove weight bearing from the affected claw (fig. 3).

Figure 3. White line disease in the medial claw of the fore leg of a dairy cow (left) showing manure filled up the white line area that had extended up to near the coronary area. White line disease in the lateral claw of the hind leg of a Holstein dairy cow (right), showing the extent of infection along the line of white line.

Sole and White Line Haemorrhages

Originate from damage to the corium with the blood being incorporated into the horn as it grows. These will become visible several weeks after the insult depending on the thickness of the sole and the rate of growth. Also abscess or white line abscess can occur if the haemorrhage becomes infected\(^{13}\).

Prevention of White Line Abscesses and Sole Ulcers

As both conditions are caused by similar factors, their causes and control are dealt with together. The corium is the horn-forming tissue. Any disruption of the corium can lead to defective horn production, and this is eventually seen clinically as lameness, viz. sole ulcers or white line disease\(^{14,16}\). The corium may become damaged because it is in a fragile state or because of excess trauma or both. The major factors involved in damage to the corium in dairy cattle can be subdivided into the headings of calving, diet, excess standing and general management.

Calving

The corium is in its most fragile state and most susceptible to bruising at the time of calving. The rings on the horns of beef cows, one for each calving, show that there is always a disruption in horn formation at parturition. It also explains why peak incidence of lameness is seen some 8 -16 weeks after calving, this being the period of time it takes for the damaged horn to grow from the
corium of the sole to the bearing surface of the foot. Not only does horn growth decrease at the
time of calving, but in heifers especially there is increased wear. This will occur from excess
standing while they are waiting to be milked, to feed, to find a place to lie down and while there
are interactive movements during social recognition with other herd members. The overall
effect is a negative net growth, viz. the rate of horn growth is less than the rate of wear. This
increase in wear relative to growth may be so great that the sole becomes extremely soft and this
further bruises the underlying corium and predisposes to sole ulcers and white line disease.
It is not known whether it is the process of calving itself which leads to increased fragility of the
corium, or the initiation of milk production. Recent work has suggested it may be the sudden
increase in milk production, leading to a massive demand for sulphur-containing amino acids,
which could be a critical factor. Sulphur-containing amino acids are essential both in the
construction of keratin, the main component of horn, and for milk production. Clearly at the time
of calving there is a sudden repartition of nutrients towards milk production and perhaps this
leads to the formation of poor quality horn. Recent studies in a UK intervention study involving
over 1100 cow-years on trial showed that cows which develop lameness gave more milk
(366 litres) than their non-lame counterparts. However, within this higher yielding ‘lame cow’
group, when cows went lame their yields reduced by an average of 396 liters per cow. The
interesting feature is that, using sophisticated data analysis, the reducing yield was detectable for
several months before the onset of clinical signs of lameness. This strongly suggests that there is
a primary defect that later leads to the onset of hoof problems.
Not only is the corium inherently more susceptible to damage at calving, but there is often a
change in diet, housing and social grouping superimposed immediately after calving which can
lead to further damage to the corium and increase the incidence of lameness

Increased Movement of the Pedal Bone Within the Hoof

The pedal bone is known to be suspended within the hoof by attachments to the laminar corium
on the axial and especially the abaxial wall, and by a pedal suspensory apparatus within the hoof
that supports the rear of the bone. Increased levels of an enzyme ‘hoofase’ can be measured
within the hoof for the two weeks before and two weeks after calving, and this leads to increased
flexibility of the suspensory system, increased movements of the pedal bone, and hence an
increased risk of bruising the corium.
For whatever reason a loosening or increase in length of the connective tissue link leads to a
sinking of the coffin bone within the horn capsule. The bone hangs in the horn capsule and
weight is transferred as tension onto the capsule.

Increased Hoof Wear

Prolonged standing on hard floors significantly increases the incidence of sole haemorrhage and
white line disease. Many of the changes that occur in the periparturient cow lead to an
increase in standing and subsequently an increase in hoof wear. The thickness of the sole at any
one time is determined by the rate of growth minus the rate of wear, so an increased wear
combined with the decreased growth that commonly occurs at calving will lead to a thinning of
the sole. Thin soles further increase the probability of bruising of the corium and subsequent
formation of poor quality hoof. Indeed, in some animals, and especially those moved into a new
facility in total confinement systems, the sole becomes so thin that this in itself is the cause of lameness. If all four feet are affected then it often results in culling. Even if they calve outside in a field, for a few days after calving cows, and especially heifers, will spend far more time standing and their lying times will be decreased. It is not known whether the decreased lying times are due to inherent nursing behavior (attending to the calf), discomfort from the perineum, an enlarged udder, or to some other factor. A range of factors lead to increased standing (and therefore increased hoof wear) after calving. Milk production starts, and the animal must wait in the collecting yard to be milked. The freshly calved heifer is often the last to enter the parlor, and hence her standing times are even more prolonged. If they produce milk then they must stand eat, and once again it will be the freshly calved heifer that may be forced to wait for the others to finish before consuming her ration. This is particularly the case if there is insufficient feeding space or blind ending narrow passage ways that the heifer is frightened from entering because of the risk of being bullied.

Immunosuppression and Increased Risk of Periparturient Diseases

There is an increasing body of evidence to suggest that most cases of chronic laminitis are not precipitated by subclinical laminitis but by non-inflammatory changes, occurring around the time of parturition and the onset of lactation, in the connective tissue that provides the support apparatus for the foot. This implies that management of housing in early lactation is as important, if not more important than the management of feeding. Diseases such as peracute toxic mastitis are more common immediately after calving, despite the fact that the udder contains high levels of colostral antibody. This occurs because of the immune suppression that is a feature of every periparturient animal. Two possible reasons for the immune suppression are thought to be 1) because their foetus is antigenically different to the dam, and hence if any foetal fluids leaked into the maternal circulation during the trauma of parturition there would be the risk of an anaphylactic reaction. In addition, 2) the dam might over react to the degeneration of her own tissue that may result from trauma in the birth canal. Many diseases are therefore more common at the time of calving, and disease in itself also increases the fragility of the corium. In extreme cases, disease such as toxic mastitis will lead to a total cessation of horn production, and this leads to hooves with hardship lines and horizontal fissures. Heifers are likely to be worst affected, partly because they have often had no prior experience of the housing and milking system and partly because in many large dairies the heifers have been reared totally separate from the main herd, and may therefore lack immunity to the infectious agents within that herd. They are then exposed to a whole range of new infections immediately post-partum, when immune suppression is at its maximum and this further depresses horn formation. This leads to long periods of standing, producing increased hoof wear at a time when hoof growth is minimal, often referred to as “negative net growth”. Immune suppression is one possible cause for the marked postpartum increase in digital dermatitis (DD) and foul referred to later.

Feeding

The nutrition program of the dairy is one of the aspects of management that can be manipulated to minimize prevalence of lameness. Providing proper amounts and forms of fiber, protein and carbohydrates clearly affects incidence of lameness as do trace minerals and vitamins. A second
feature of parturition is the decrease in the rate of rumination shown by all cows. This reduced
rumination combined with the marked increase in concentrate feeding which occurs at the time of
calving leads to an increased risk of rumen acidosis. Rumen acidosis has been linked to coriosis
(laminitis), leading to an even greater increased fragility of the corium. The problem is
compounded by rations that are low in long fiber \(^{10,25,26}\). Rumen acidosis also leads to depressed
biotin synthesis, and lack of biotin further exacerbates poor horn formation, especially of the
white line cement\(^{15}\). In one UK trial, supplementation with 20 mg/day of biotin lead to a 50%
reduction in lameness caused by white line disease. No effect was seen until after 120 days of
supplementation, this being the period that it takes for the white line cement to reach the weight-
bearing surface of the sole\(^{15}\). The risk of white line disease increases with increasing parity, and
for cows in their third lactation and above, biotin decreased the incidence of white line lameness
by a factor of three \(^{2,10,11}\). Many rations are now supplemented with biotin, although clearly the
best preventive measure is to avoid the development of periparturient rumen acidosis. The desire
to incorporate high levels of forages in dairy rations will likely to continue because they offer the
potential for delivering high nutrient densities while optimizing rumen health. Production of
quality forage/silage is dependent up on the management decisions and practices implemented
before, during and after the harvest/ensiling period. Once crops have been harvested, monitoring
for nutrients density, nutrient availability and the presence of toxins and troublesome silage
volatile fatty acids can help alleviate off-feed and rumenal acidosis issues that can predispose
hoof health problems \(^{27}\).

The rate of resumption of rumen contractions immediately post-calving is considerably affected
by the quantity of long fiber in the diet. Cows on low fiber/high concentrate diets have a much
longer period of rumenal atony and are much more susceptible to rumen acidosis than cows on
high long fiber diets. Straw is an excellent material to ensure that rumen contractions and
therefore rates of salivation and sodium bicarbonate production are maintained at an optimum
level. Prepartum concentrate feeding in the transition ration is also important as this stimulates
the development of the rumen papillae. Well-developed papillae are then present to absorb the
acid produced by high concentrate post-partum rations and there is less risk of rumen acid
overload.

Cows should therefore be fed a diet high in long fiber, to stimulate rumination. Concentrates
should be built up slowly after calving, reaching a peak at no less than 2-4 weeks after calving.
No more than 4.5-5.0kg of concentrate should be given at each feed and the final dietary
concentrate:forage ratio should be such that it prevents acidosis.

Excessive Standing

Poor cubicule (free stall) comfort, due to suboptimal dimensions or lack of bedding, and heifers
that have not been trained to use cubicules, will both lead to increased standing. Lack of loafing
area and blind ending passageways which heifers particularly feel reluctant to enter, further
exacerbates the problem. The post-partum heifer is particularly susceptible to these changes as
she is often brought into the milking herd with very little preparatory integration. She is often last
to feed and to be milked, and she must establish herself in the social dominance order within the
herd. All of these changes occurs around the time of calving when the growth of sole horn is
minimal.
Management

There is strong evidence that wet and dirty surface being associated with lameness particularly for digital dermatitis. Horn absorbs moisture from the environment and damp horn is softer than dry horn. Cows should therefore be managed and housed to keep their feet as dry as possible. This can be quite difficult in free-stall systems. Regular twice daily scraping of the passages, plus a sprinkling of lime added to the free-stall bed to aid mastitis control, helps to keep hooves dry. Cows should be handled gently. Rushing them along tracks means that they are unable to avoid standing on stones and this can lead to additional bruising of the corium, especially in the freshly calved cow where the corium is already more fragile and the sole is thin due to negative net growth. The provision of special "cow tracks", with a soft tree-bark surface, will help. Feet should not be over-trimmed at drying off, and cows and heifers should be allowed access to hard surfaces during the dry period to promote an increased thickness of the sole. It was proved that soft floors favour the requirements for the correct functioning of the claw and unimpeded cow behaviour. Also the experiment show that horn quality is strongly dependent on unimpeded locomotion because it is probable that a close relationship exists between the biomechanics, microcirculation and nutrition of the living cells that nourish the horn producing tissues of the claw. Installing the rubber mats has the advantage of solving two walking area problems in one, namely insufficient slip resistance and floor hardness.

Digital Dermatitis (Hairy Warts)

Digital dermatitis is a superficial dermatitis that occurs most often on the rear feet at the commissure of the interdigital space near the heels. It is thought to be a multi factorial disease with bacterial involvement. Low-grade lesions of DD are often visible on the feet of dry cows, seen as chronic areas of hyperkeratotic skin around the interdigital cleft. Although not causing lameness in the dry period, these lesions develop into raw open sores in early lactation to produce typical clinical signs. The control of DD must therefore be based on preventing the development of these ‘subclinical’ lesions, and this can be achieved by foot hygiene, including regular hoof disinfection. Both DD and foul are known to increase dramatically after calving. This is likely to be due to a combination of periparturient immune suppression and increased standing, the latter leading to wet and dirty hooves. Many farms are simply not prepared to practice the regular hoof disinfection that is needed to control digital dermatitis, and yet the disease can be almost fully suppressed by regular foot bathing. When dealing with DD think mastitis. Regular post dipping (i.e. teat disinfection) is one of the most common mastitis preventive measures. In addition, a clinical case of mastitis is considered to be a risk to other cows and is treated and isolated accordingly. The same approach should be taken with any infectious disease, and especially DD. Clinical cases should be treated using a topical disinfectant or antibiotic, e.g. an intra mammary tube, and covered with a dressing until healed. Unless we take this approach, cows with hairy warts will remain a constant reservoir of infection for other cows in the herd, and the problem will never resolve.

The required frequency of bathing will depend on the level of environmental challenge, but routines such as four days per week, or 9 days on and 5 days off are becoming increasingly common. Many farms foot bath cows on a daily basis and are pleased with the results. The foot bath should be sited in the usual cow flow walkway after the exit to the parlour, but not so close
to the parlour that it obstructs the exit or slows milking. Anything that slows milking is unlikely to be done on a regular basis. Ideally there should be enough room for at least one whole side of the parlour to exit before the foot bath is reached, thus minimizing any disruption to milking. Two foot baths placed in series, the first to wash the feet, the second with the active chemical, are ideal, and cows should of course exit into a clean and scraped yard. Make sure that the floor of the bath is comfortable walking surface. If high ridges are present the cows will not like walking through the bath, and this will lead to reluctance to enter, to increased faecal contamination, and a risk that the teats will become splashed with disinfectant. Foot baths with a foam rubber base or similar are sometimes used. When the cow stands on the rubber mat the liquid chemical from within the mat starts to form a pool around the foot and this acts as a bath. The system is easy to use, but it cannot be as effective as a standard foot bath, simply because as the depression produced by the cows foot begins to fill with chemical the cow starts to move onto the next stride and hence the foot does not get as effective a soaking as with the plain water bath.

A disinfectant foam system is also available (‘Kovex’), set up such that cows walk through a layer of foam at the entrance to the parlour. The Kovex™ foam consists of a peracetic acid disinfectant, plus peroctranoique acid, a patented booster for the peracetic acid. The foam has adhesive properties to improve the adhesion to the hoof and a green dye is added to reduce the glare of the foam, making it less intimidating for the cows to walk through. A skin conditioner is added and a detergent, to assist the foam to penetrate the foot. The foam is deposited at the entrance to the milking parlour, to a depth of 12-14 cm. Cows are therefore standing in the foam whilst waiting to enter the parlour, foam is carried into the parlour on their feet and remains on their feet during the milking process. The majority of cows therefore have their feet bathed in foam for some 5-10 minutes. Trials have suggested that the foam is effective as a preventive, but the disinfectant seems to have a limited effect as a treatment of existing lesions. The system is easy to use and the chemicals are pleasant to handle, with no adverse environmental effects, but by its very definition foam is a liquid with holes in it, hence its ability to penetrate the interdigital space must be less than when using a liquid bath.

A variety of chemicals are used for foot bathing, each with their own advantages and disadvantages. Formalin is cheap and rapidly degraded in the environment, but is unpleasant to handle. Copper sulfate is more pleasant to handle but is not degraded in the environment, and copper poisoning is becoming an increasing problem in dairy cows. Ideally it therefore should not be simply discarded into the farm drainage system. Zinc sulfate, organic acids and disinfectants such as gluteraldehyde and peracetic acid are also effective. It is the method of administration, the frequency of foot bathing and the cleanliness of the environment that is more important than the chemicals used. Antibiotic foot baths are permissible in some countries, but as with mastitis, these should be considered as a treatment rather than a control measure. Response to treatment is good but recurrence is common. It is this author’s belief that within a few years disinfectant foot bathing will be almost as common as post milking teat disinfection.

Interdigital Phlegmon (Foot Rot)

Is a bacterial disease that is generally caused by a synergism between two bacteria. It has a very characteristic smell and causes necrosis in the interdigital skin. It can invade the deeper tissues if not treated early with antibiotic.
Conclusion

Cattle foot require regular attention. Functional hoof trimming must be included in the management system of each dairy farm. Lame cows should be looked after to prevent further damage to the hoof structure. Any stressful management or conditions specially around calving time must be avoided. Feeding and supplementation is of paramount importance. In dermatitis epidemic areas regular foot bath is recommended. Preventing lameness means considerably reducing milk and fertility losses and investing in a cow’s comfort is definitely profitable in the long term.28

Acknowledgements

This is an amended text of a paper presented to the Western Canadian Dairy Seminar, Red Deer, in March 2005. Some of the information has been previously published in the books ‘A Veterinary Book for Dairy Farmers’ and ‘Cattle Lameness and Hoof care’, published by Old Pond Publishing, 36 White House Road, Ipswich, IP1 5LZ, UK and Diamond Farm Enterprises, Box 537, Alexandra Bay, NY13607, and is reprinted with their permission.

References

چکیده:

 لنگش در گاوهای شیری

راجر خلبانی، سيف ا. سهبانلی

1 گروه دامپزشکی وود، گلچستر، انگلستان
2 گروه علوم دامپزشکی، دانشگاه شیراز، شیراز، ایران.

مرور- این مقاله با هدف مرور لنگش در گاوهای شیری نگارش شده است. اما ابتدا لازم بود تا یک نگرش کلی در رابطه با ساختار اناتومیکی، رشد سرم و رشد زیادی آن بیدا نمود. عمل ای عمدی لنگش در گاو مانند لمنیت (تومر بافت مورف) و چهره های مختلف بالینی، مانند زخم کف سرم، بیماری خط سفید، خونریزی کف سرم و خط سفید مرور و بحث شده است. پیشگیری از لنگش و عواملی که در ایجاد ضایعات سرم مانند دراند با عفونیت زایش، رژیم غذایی، زیادی ایستادن دام در گل و مدیریت کلی گل به شده است.