Viscoelastic Flow and Heat Transfer over a Non-Linearly Stretching Sheet: OHAM Solution

M. Mustafa

School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

Email: meraj_mm@hotmail.com

(Received March 9, 2015; accepted June 24, 2015)

ABSTRACT

In this paper the viscoelastic flow and heat transfer over a non-linearly stretching sheet with the power law velocity of the form \(u_w = cx^n \) is investigated for the first time. A prescribed power-law surface temperature distribution of the form \(T_w = T_\infty + Ax^n \) is considered. Mathematical model is constructed through the constitutive equations of second grade fluid. The arising non-linear boundary value problem has been treated analytically by a powerful optimal homotopy analysis method (OHAM). The solutions are found in excellent agreement with the obtained numerical solutions in the case of Newtonian fluid. The results show that velocity and skin friction coefficient have direct relationship with the power-law index \(n \). Further the thermal boundary layer becomes thinner when larger values of \(n \) are taken into account.

Keywords: Second grade fluid; Non-linearly stretching sheet; Heat transfer, Optimal homotopy analysis method (OHAM); Non-linear problem.

NOMENCLATURE

\(a, \alpha \) positive constants

\(C_f \) skin friction coefficient

\(f \) dimensionless stream function

\(h \) auxiliary (convergence control) parameter in OHAM

\(k \) thermal conductivity

\(K \) local second grade fluid parameter

\(Nu \) local Nusselt number

\(Pr \) Prandtl number

\(q \) embedding parameter in OHAM

\(q_w \) wall heat flux

\(Re \) local Reynolds number

\(T \) fluid temperature

\(T_w \) wall temperature

\(T_\infty \) ambient fluid temperature

\(u_w \) velocity of the stretching sheet along the \(x - \) direction

\(u, v \) velocity components along the \(x-, y- \) directions

\(\eta \) differentiation with respect to \(\eta \)

\(\alpha, \mu, \nu, \theta, \rho, \tau_w \) material fluid parameter, dynamic viscosity, kinematic viscosity, dimensionless temperature, fluid density, wall shear stress

1 INTRODUCTION

Non-Newtonian fluid mechanics has emerged as one of the most important subjects of modern applied mechanics. Materials encountered in industry and medicine such as multigrade oils, composite materials, blood, polymers, liquid detergents, fruit juices, printing inks and industrial suspensions exhibit the shear-rate dependent viscosity and thus fall outside the classical model of...
Newtonian fluids. The frequently discussed power-law fluid model has tendency to describe shear-thinning as well as shear-thickening effects. The former is a common characteristic of many non-Newtonian fluids including blood, polymers and composite materials. On the other hand, some fluids possess normal stress differences which can be described through second grade fluid model. In contrast to the power-law model, the second grade fluid model has been scarcely discussed in the literature due to its complex constitutive relationship between stress and shear rate. Vajravelu and Roper (1999) numerically investigated the flow and heat transfer in second grade fluid in the presence of viscous dissipation and heat generation/absorption. Later, Ariel (2001) discussed the axisymmetric flow of second grade fluid past a radially stretching surface using explicit finite difference scheme. Stagnation-flow of second grade fluid with variable wall heat flux was described by Massoudi (2003). Effects of heat transfer on the hydro-magnetic flow of second grade fluid past a stretching sheet were addressed by Liu (2004). Cortell (2006) extended this problem for permeable stretching sheet. Hayat and Sajid (2007) presented homotopy based analytic solution for second grade fluid flow caused by linear stretching sheet. Abbas et al. (2008) described the flow of second grade fluid due to oscillatory stretching sheet. They presented both numerical and analytical solutions of the arising non-linear problem. Abel and Mahesha (2008) discussed the flow of second grade fluid with variable thermal conductivity, radiation and non uniform heat source/sink. Hayat et al. (2009) investigated the boundary layer flow over a flat plate with uniform free stream, the so-called Blasius flow, by considering second grade fluid. Simultaneous effects of heat and mass transfer on the flow of second grade fluid with Dufour and Soret effects were examined by Hayat et al. (2010). Recently, a variety of two-dimensional flow problems concerning second grade fluid have been discussed in the literature (see Abel et al. (2010), Olajuwon (2011), Hayat et al. (2012), Raffari et al. (2013), Mustafa et al. (2014), Mastroberardino (2014), Weidman (2014) and Türkyılmazoglu (2014)).

To the best of author's knowledge, the flow of viscoelastic fluid due to non-linearly stretching surface is not yet reported. This work is therefore undertaken to fill such a void. Heat transfer analysis is also carried out by assuming a power-law surface temperature distribution. Mathematical formulation involves the constitutive relationships of second grade fluid. The arising non-linear boundary value problem is tackled through a powerful analytic approach namely optimal homotopy analysis method (OHAM) (see Marinca and Herisanu (2008), Niu and Wang (2010), Liao (2010), Abbasbandy et al. (2011), Sheikholeslami et al. (2011), Mustafa et al. (2013a), Mustafa et al. (2013b), Sheikholeslami et al. (2014), Rashidi et al. (2014) and Hassan and Rashidi (2014)). Graphs are presented to examine the behaviors of parameters entering in the problem. Expressions of skin friction coefficient and local Nusselt number are evaluated and discussed in detail.

2 PROBLEM FORMULATION

Consider the two-dimensional flow of an incompressible second grade fluid and heat transfer over a plane surface coincident with the plane \(y = 0 \). The sheet is stretched in its own plane with the velocity \(u_0 = cx^n \), where \(c, n > 0 \) are constants. Temperature across the sheet varies non-linearly in the form \(T_0 = T_w + Ax^n \), where \(A \) is a constant and \(T_w \) denotes the ambient fluid temperature. The boundary layer equations governing the flow of second grade and heat transfer in the absence of viscous dissipation and heat generation/absorption can be expressed as below:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \quad u \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{\partial p}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = \rho u \frac{\partial \theta}{\partial y} + \frac{2}{3} \frac{\partial \tau_{yy}}{\partial y},
\]

\[
\rho \frac{\partial \theta}{\partial y} = \frac{\partial \tau_{yy}}{\partial y} + \alpha \left(\frac{\partial \theta}{\partial y} \right)^2,
\]

where \(u \) and \(v \) are the velocity components along the \(x \)- and \(y \)- directions respectively, \(\nu \) is the kinematic viscosity, \(\alpha \) is the material fluid parameter, \(k \) is the thermal conductivity, \(\rho C_p \) is the effective heat capacity of the fluid and \(T \) is the local fluid temperature. The boundary conditions are as under:

\[
u = u_0(x) = cx^n, \quad T = T_w(x) = T_w + Ax^n \quad \text{at} \quad y = 0,
\]

\[
u
\to 0, \quad T \to T_w \quad \text{as} \quad y \to \infty.
\]

Introducing the following similarity transformations

\[
\eta = \sqrt{\frac{(n+1)}{2\nu}} \frac{x}{y}, \quad u = cx^n f'(\eta),
\]

\[
v = \sqrt{\frac{(n+1)}{2}} \frac{x}{y} \left(f(\eta) \right)^{n-1},
\]

\[
\theta(\eta) = \frac{T - T_w}{T_w - T_w},
\]

Eq. (1) is identically satisfied and Eqs. (2)-(4) become

\[
f'' + \frac{2n}{n+1} \frac{f'}{f} + \frac{3}{2} \left(\frac{n-1}{n+1} \right) f' = 0,
\]

\[
\frac{1}{Pr} \frac{\partial \theta}{\partial y} + \frac{2n}{n+1} f' = 0,
\]

where \(\alpha \) is the thermal diffusivity, \(\rho \) is the density and \(C_p \) is the heat capacity of the fluid. The fluid is assumed to have constant physical properties, \(\rho \) is the density of mass, \(C_p \) is the heat capacity of mass and \(\xi \) is the non-dimensional coordinate along the sheet. The following boundary conditions are used:

\[
u = u_0(x) = cx^n, \quad T = T_w(x) = T_w + Ax^n \quad \text{at} \quad y = 0,
\]

\[
u
\to 0, \quad T \to T_w \quad \text{as} \quad y \to \infty.
\]
\[f(0) = 0, \quad f'(0) = 1, \quad \theta(0) = 1, \quad \theta'(\infty) \to 0, \quad \theta(\infty) \to 0, \]
\[\text{where } K = \frac{\alpha c \mu^{\gamma}}{\mu} \text{ is the local second grade fluid parameter and } Pr = \frac{\mu C_p}{k} \text{ is the Prandtl number.} \]

The skin friction coefficient \(C_f \) and local Nusselt number \(N_u \) are defined as below:
\[C_f = \frac{\tau_w}{\rho u_n^2}, \quad N_u = \frac{q}{\rho u_n T_n}, \]
\[\text{where } \tau_w \text{ is the wall shear stress and } q_n \text{ is the wall heat flux defined as:} \]
\[q_n = -k \frac{\partial T}{\partial y}, \]
\[\text{Using Eqs. (5) and (10) in Eq. (9), one obtains} \]
\[\text{Re}^{\frac{1}{2}} C_f = \frac{n+1}{2} \left[1 + K \left(\frac{7n-1}{2} \right) \right] f'(0), \]
\[\text{Re}^{\frac{1}{2}} N_u = -\frac{n+1}{2} f'(0), \]
\[\text{where } \text{Re} = u_n x / \nu \text{ is the local Reynolds number.} \]

2.1 Particular Cases

(i) When \(K = 0 \), viscous flow and heat transfer due to non-isothermal non-linearly stretching sheet is obtained, as discussed by Cortell (2006). In this problem, when \(Pr = 1 \), the solution of \(f' \) is also a solution of \(\theta \).

(ii) When \(n = 0 \), Eqs. (8)-(10) reduce to the well known Sakiadis flow problem in second grade fluid.

(iii) When \(n = 1 \), flow of second grade fluid and heat transfer due to non-isothermal linearly stretching sheet is achieved.

3 OPTIMAL HOMOTOPY ANALYSIS METHOD (OHAM)

In order to derive analytic solutions of Eqs. (6)-(8) by optimal homotopy analysis method (OHAM), we choose the following initial guesses \(f_0 \) and \(\Theta_0 \) of \(f(\eta) \) and \(\Theta(\eta) \) as under:
\[f_0(\eta) = 1 - \exp(-\eta), \quad \Theta_0(\eta) = \exp(-\eta), \]
and the auxiliary linear operators are selected as below:
\[\mathbf{L_0}(f) = \frac{d f}{d \eta}, \quad \mathbf{L_0}(\Theta) = \frac{d \Theta}{d \eta} - \Theta. \]
If \(q \in [0,1] \) is an embedding parameter and \(h \) the non-zero auxiliary parameter, then generalized homotopic equations corresponding to (8)-(10) can be expressed as follows:
\[(1-q) \mathbf{L}_0 \left[\frac{\partial f(\eta,q)}{\partial \eta} - f_0(\eta) \right] = qh \mathbf{N}_1 \left[\frac{\partial f(\eta,q)}{\partial \eta} \right], \]
\[(1-q) \mathbf{L}_0 \left[\frac{\partial \Theta(\eta,q)}{\partial \eta} - \Theta_0(\eta) \right] = qh \mathbf{N}_2 \left[\frac{\partial \Theta(\eta,q)}{\partial \eta} \right], \]
\[\mathbf{N}_1 \left[\frac{\partial f(\eta,q)}{\partial \eta} \right] \bigg|_{\eta=0} = 1, \quad \Theta(\eta,q) \bigg|_{\eta=0} = 1, \]
\[\frac{\partial f(\eta,q)}{\partial \eta} \bigg|_{\eta=\infty} = 0, \quad \Theta(\eta,q) \bigg|_{\eta=\infty} = 0, \]
in which the non-linear operators \(\mathbf{N}_1 \) and \(\mathbf{N}_2 \) through Eqs. (8) and (9) are
\[\mathbf{N}_1 \left[\frac{\partial f(\eta,q)}{\partial \eta} \right] = \frac{\partial f(\eta,q)}{\partial \eta} + \frac{\partial}{\partial \eta} \left(\frac{3n-1}{2} \right) \left(\frac{\partial f(\eta,q)}{\partial \eta} \right)^2, \]
\[\mathbf{N}_2 \left[\frac{\partial \Theta(\eta,q)}{\partial \eta} \right] = \frac{\partial \Theta(\eta,q)}{\partial \eta} + \frac{\partial}{\partial \eta} \left(\frac{2n}{n+1} \right) \left(\frac{\partial \Theta(\eta,q)}{\partial \eta} \right)^2. \]

By Taylor series expansion one obtains
\[\hat{f}(\eta,q) = f_0(\eta) + \sum_{m=1}^{\infty} f_m(\eta) q^m; \]
\[f_m(\eta) = \frac{1}{m!} \frac{\partial^m \hat{f}(\eta,q)}{\partial q^m} \bigg|_{q=0}, \]
\[\Theta(\eta,q) = \Theta_0(\eta) + \sum_{m=1}^{\infty} \Theta_m(\eta) q^m; \]
\[\Theta_m(\eta) = \frac{1}{m!} \frac{\partial^m \Theta(\eta,q)}{\partial q^m} \bigg|_{q=0}. \]

The final solutions can be obtained by substituting \(q = 1 \) in the above equations. The functions \(f_m \) and \(\Theta_m \) can be determined from the deformation of Eqs. (8)-(10). Explicitly \(m \)-th order deformation equations corresponding to Eqs. (8)-(10) are as under:
The optimal values of the convergence control parameter \(h \) can be determined by minimizing the squared residuals of the governing Eqs. (6) and (7),

\[
\zeta_M' = \left[\sum_{j=1}^{n} N_j \left(\int_{\beta} \sum_{i=1}^{M} f_i(\eta) d\eta \right) \right] d\eta,
\]

\[
\zeta_M'' = \left[\sum_{j=1}^{n} N_j \left(\int_{\beta} \sum_{i=1}^{M} f_i(\eta) \sum_{i=1}^{M} \theta_i(\eta) d\eta \right) \right] d\eta.
\]

Similar kind of error has also been considered in previous studies (see Liao (2010)). The smaller \(\zeta_M' \) 's, the more accurate the \(M \)-th order approximation of the solution. First of all we plot the so called \(h \) -curves and the squared residuals given in (27) and (28) in Figs. 1-3. A sample of optimal values of \(h \) for functions \(f \) and \(\theta \) for different values of parameter \(n \) has been given in Table 1.

4 RESULTS AND DISCUSSION

This section focuses on the physical behaviors of the involved parameters on the velocity and temperature distributions. Figs. 4 and 5 compare the 15th-order OHAM solutions for different values of \(n \) and \(\text{Pr} \) with the corresponding numerical solutions when \(K = 0 \). Here the numerical solutions have been derived by MATLAB built in routine \texttt{bvp4c}. It can be seen that both the solutions coincide for both small and large values of \(n \) and \(\text{Pr} \). Fig. 6 presents the variation in velocity distribution with an increase in power-law index \(n \). The bigger values of \(n \) imply larger velocity of the stretching sheet. Due to this reason the \(x \) - component of velocity in the neighborhood of the sheet increases...
when \(n \) is increased. It may be noted that profiles descend to zero at larger values of \(\eta \) when \(n \) is increased indicating an augmentation in the boundary layer thickness. Fig. 7 is prepared to examine the impact of local second grade fluid parameter \(K \) on the hydrodynamic boundary layer. The velocity approaches zero value at large distance from the sheet when \(K \) is increased. This indicates that boundary layer thickness is an increasing function of \(K \).

Fig. 7. Variation of \(f' \) with \(K \).

Fig. 8 plots the skin friction coefficient \(Re^{1/2} C_f \) against the viscoelastic fluid parameter \(K \) for different values of \(n \). It is quite obvious that larger values of \(n \) indicates larger sheet velocity which requires stronger driving force at the wall. Consequently the wall shear stress increases with an increase in \(n \). For a fixed value of \(n \), wall shear stress reduces when \(K \) is increased. From the industrial point of view, this outcome is undesirable since the power required in displacing the fluid over the sheet increases when \(K \) is increased.

Fig. 8. Variation of \(Re^{1/2} C_f \) with \(n \) and \(K \).

The variation in temperature distribution with an increase in power-law index \(n \) can be observed from Fig. 9. Both temperature \(\theta \) and thermal boundary layer thickness are decreasing functions of power-law index \(n \). From the physical point of
Table 1 Optimal values of the auxiliary parameter η at 15th-order of approximations for different values of n when $K = 0.25$ and $Pr = 1$

<table>
<thead>
<tr>
<th>n</th>
<th>Optimal η for f</th>
<th>Minimum e''_{η}</th>
<th>Optimal η for θ</th>
<th>Minimum e''_{η}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.1025</td>
<td>1.52×10^{-11}</td>
<td>-1.184</td>
<td>7.96×10^{-12}</td>
</tr>
<tr>
<td>1</td>
<td>-0.738</td>
<td>2.26×10^{-27}</td>
<td>-1.198</td>
<td>6.11×10^{-16}</td>
</tr>
<tr>
<td>2</td>
<td>-0.738</td>
<td>1.020×10^{-17}</td>
<td>-0.879</td>
<td>1.37×10^{-13}</td>
</tr>
<tr>
<td>3</td>
<td>-0.585</td>
<td>8.24×10^{-15}</td>
<td>-0.678</td>
<td>1.11×10^{-11}</td>
</tr>
<tr>
<td>4</td>
<td>-0.480</td>
<td>3.94×10^{-13}</td>
<td>-0.557</td>
<td>1.61×10^{-10}</td>
</tr>
<tr>
<td>5</td>
<td>-0.408</td>
<td>5.06×10^{-12}</td>
<td>-0.478</td>
<td>1.59×10^{-9}</td>
</tr>
</tbody>
</table>

Table 2 Values of skin friction coefficient $Re^{1/2} C_f$ and $Re^{1/2} Nu_x$ when $Pr = 1$

<table>
<thead>
<tr>
<th>n</th>
<th>K</th>
<th>$Re^{1/2} C_f$</th>
<th>$Re^{1/2} Nu_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-0.44375</td>
<td>0.44375</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>-0.38276</td>
<td>0.44634</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>-0.32416</td>
<td>0.44847</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>-0.26742</td>
<td>0.45024</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>-1.56525</td>
<td>1.02789</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>-2.04124</td>
<td>1.04841</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>-2.45677</td>
<td>1.06430</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-1.34845</td>
<td>1.34845</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>-2.84036</td>
<td>1.41148</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>-3.97463</td>
<td>1.44857</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>-4.91622</td>
<td>1.47385</td>
</tr>
</tbody>
</table>

view, bigger values of n enhance the intensity of cold fluid at the ambient towards the hot stretching surface due to increased fluid motion in the x-direction adjacent to the sheet. In Fig. 10, we present the behavior of local second grade fluid parameter K on the temperature θ. Temperature at a point above the sheet decreases with an increase in K. Fig. 11 illustrates the effects of Prandtl number Pr on the thermal boundary layer. A bigger Prandtl number fluid has relatively weaker thermal diffusivity and hence it yields shorter penetration depth of the temperature θ. Further the temperature profiles become steeper when Pr is increased indicating a growth in the magnitude of local Nusselt number.

![Fig. 10. Variation of θ with K.](image)

![Fig. 11. Variation of θ with Pr.](image)

![Fig. 12. Variation of $Re^{1/2} Nu_x$ with n and K.](image)

Table 2 gives the numerical values of skin friction coefficient and local Nusselt number for different
values of local second grade fluid parameter \(K \). The cases of Sakiadis flow \((n = 0)\), linearly stretching sheet \((n = 1)\) and non-linearly stretching sheet with \(n = 2 \) are considered. We notice that magnitude of skin friction coefficient increases when \(K \) is increased in the linearly and non-linearly stretching sheet problems. Interestingly, opposite trend is observed in the Sakiadis flow problem.

5 CONCLUDING REMARKS

For the first time, the flow and heat transfer of viscoelastic fluid due to non-linearly stretching sheet is considered. Analytic solutions are computed by powerful analytical approach namely optimal homotopy analysis method (OHAM). The main observations of this work are outlined below:

(i) Analytic solutions are found in excellent agreement with the numerical solutions in a limiting sense.

(ii) Velocity increases and temperature decreases when the power-law index \(n \) is incremented.

(iii) An increase in the local second grade fluid parameter \(K \) increases the velocity and decreases the temperature distribution.

(iv) Both skin friction coefficient and local Nusselt number have direct and linear relationship with the local second grade fluid parameter \(K \).

(v) The well known Sakiadis flow problem for second grade fluid can be obtained as special case of present study by substituting \(n = 0 \).

REFERENCES

