Three-Dimensional MHD Flow of Casson Fluid in Porous Medium with Heat Generation

S. A. Shehzad1, T. Hayat2,3 and A. Alsaedi3

1Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 55000, Pakistan
2Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan
3Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia

†Corresponding Author Email: ali_qau70@yahoo.com

(Received September 10, 2014; accepted November 17, 2014)

ABSTRACT
The magnetohydrodynamic (MHD) three-dimensional boundary layer flow of an incompressible Casson fluid in a porous medium is investigated. Heat transfer characteristics are analyzed in the presence of heat generation/absorption. Laws of conservation of mass, momentum and energy are utilized. Results are computed and analyzed for the velocities, temperature, skin-friction coefficients and local Nusselt number.

Keywords: Three-dimensional flow; Casson fluid; Stretching surface; Heat generation/absorption.

NOMENCLATURE
\begin{align*}
u, \nu, \psi & \text{ velocity components} \\
\beta & \text{ Casson parameter} \\
\rho & \text{ fluid density} \\
T & \text{ temperature} \\
\sigma & \text{ thermal diffusivity} \\
\epsilon_p & \text{ specific heat} \\
f, g & \text{ dimensionless velocity components} \\
M & \text{ Hartman number} \\
\alpha & \text{ ratio parameter} \\
B & \text{ heat source/sink parameter} \\
q_w & \text{ wall heat flux} \\
\sigma^* & \text{ electrical conductivity} \\
K & \text{ permeability parameter} \\
\nu & \text{ kinematic viscosity} \\
B_0 & \text{ Applied magnetic field} \\
\dot{Q} & \text{ heat generation parameter} \\
T_{\infty} & \text{ ambient fluid temperature} \\
\theta & \text{ dimensionless temperature} \\
\lambda & \text{ porosity parameter} \\
Pr & \text{ Prandtl number} \\
\tau_{wx} & \text{ wall shear stress}
\end{align*}

1. INTRODUCTION
The magnetohydrodynamic (MHD) flows of an electrically conducting fluid are encountered in many geophysical, astrophysical and engineering applications. Hydromagnetic flows have a key role in the fields of aeronautics, stellar and planetary magnetospheres. Magnetohydrodynamics concepts are utilized by the engineers in the design of heat exchangers, pumps, thermal protection, in space vehicle propulsion, control and re-entry, and in creating novel power-generating systems. The purification of molten metals from non-metallic inclusions through the application of magnetic field is another important feature of MHD. All such applications of MHD give rise to investigate the problems which involves the magnetohydrodynamic effects. For example, Turkyilmazoglu (2011) studied MHD boundary layer flow of viscous fluid over a rotating sphere near an equator with heat transfer. He presented both numerical and analytical solutions. MHD boundary layer flow of viscous fluid induced by an exponentially shrinking sheet was studied by Bhattacharyya and Pop (2011). Makinde (2012) examined MHD boundary layer flow of viscous fluid over flat surface with Newtonian heating and Navier slip. Hayat et al. (2012a) developed the series solution for the MHD flow of an Oldroyd-B fluid passing through a porous channel. Rashidi and Mehr (2014) considered problem for the series solutions of velocity and temperature. On the other hand the flows in porous media have practical applications in heat removal from nuclear fuel
debris, underground disposal of radiative waste material, storage of food stuffs, paper production, oil exploration etc. Especially, the related boundary layer flows with heat transfer have received much attention of the researchers in view of achieving industrial product of desired quality. The rates of cooling and stretching have key role in such situations. No doubt, the flow generated by the stretching of a flat surface has a great relevance to the polymer extrusion. For example, the extrudate from the die is generally drawn and simultaneously stretched into a surface in a melt spinning process, which is thereafter solidified through rapid quenching or gradual cooling by direct contact water or chilled metal rolls. Closed form solution for the boundary layer flow of viscous fluid over a stretching surface was firstly constructed by Crane (1970). He assumed that the stretching surface possess a linear velocity with fixed distance from the origin. Afterwards the Crane’s problem has been studied extensively through different aspects (see few recent studies for two-dimensional flows (Rashidi et al. (2011), Javed et al. (2011), Mukhopadhyay (2012) and Hayat et al. (2012b)).

It is well known fact that the fluids appear in industrial and engineering processes are mostly non-Newtonian fluids. There are materials like drilling muds, sugar solution, certain oils, clay coating, colloidal and suspension solution, certain oils, lubricants etc. which fall into the category of non-Newtonian fluids. The properties of such materials cannot be explored by simple Navier-Stokes equations. According to the diverse characteristics of such materials, different fluid models are developed in the past like second grade fluid (Jamil et al. (2011)), third grade fluid (Abelman et al. (2009)), fourth grade fluid (Hayat et al. (2010)), Maxwell and Oldroyd-B fluids (Wang and Tan (2011) and Jamil et al. (2014)), Burgers' fluid (Jamil and Fetecau (2010)), Jeffrey fluid (Hayat et al. (2012c)), Eyring-Powell fluid (Hayat et al. (2014a)), micropolar fluid (Rashidi et al. (2011)), Walters' B fluid (Hayat et al. (2014b)), Casson fluid (Shahmohamadi (2012)) etc. The fluid model under consideration is Casson. This model is plastic fluid model that exhibits the characteristics of shear thinning that quantifies the yield stress and high shear viscosity. This fluid model is a good candidate to explore the properties of biological materials, foams, molten chocolate, cosmetics, nail polish etc.

Previous literature on the topic witnesses that little has been said yet about the three-dimensional flows. There are only few attempts in this direction. For example, Wang (1984) investigated the three-dimensional boundary layer flow of viscous fluid generated by linearly stretched surface. Hydromagnetic three-dimensional free convection flow over a stretching surface was studied by Chakravarty (1999). Ariel (2003) provided the homotopy perturbation solution of the problem of Wang (1984). Shehzad et al. (2012) discussed the three-dimensional boundary layer flow of Jeffrey fluid with convective conditions. The aim here is to develop a mathematical model for three-dimensional flow of Casson fluid over a linearly stretching surface. The magnetohydrodynamic fluid fills the half space. Further, heat transfer effects are taken into account when heat generation/absorption effects are present. The governing nonlinear partial differential equations are converted into the ordinary differential equations by employing suitable transformations. The resulting nonlinear is computed by a newly developed modern technique namely the homotopy analysis method (Liao (2003), Rashidi and Erfani (2012), Hayat et al. (2012b), Turkylmazoglu (2012), Shehzad et al. (2013), Shehzad et al. (2014), Hayat et al. (2014c,d) and Malvandi et al. (2014a,b) (HAM). Results are plotted and displayed. The important observations of this study are listed in the conclusions.

2. MATHEMATICAL FORMULATION

We consider three-dimensional boundary layer flow of an incompressible Casson fluid in a porous medium. The fluid is electrically conducting under the influence of a constant applied magnetic field B_0. In addition, the induced magnetic field is not considered because of small magnetic Reynolds number. Physical properties of fluid are assumed constants. Effects of viscous dissipation are neglected. Mathematical formulation is given in the presence of heat generation/absorption. We denote u, v and w the x, y and z components of velocity, T the temperature and T_∞ the ambient temperature, respectively. The resulting boundary layer equations are

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0, \quad (1)
\]

\[
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \nu \left(\frac{1}{\beta} \frac{\partial^2 u}{\partial z^2} + \frac{\sigma^* B_0^2}{\rho} \frac{v}{K} \right) u \quad (2)
\]

\[
\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = \nu \left(\frac{1}{\beta} \frac{\partial^2 v}{\partial z^2} + \frac{\sigma^* B_0^2}{\rho} \frac{v}{K} \right) v \quad (3)
\]

\[
\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \frac{\sigma^* B_0^2}{\rho C_p} (T - T_\infty) \quad (4)
\]

where $\beta = \mu_B \sqrt{2 \pi c_i / \rho}$ is the Casson fluid parameter, σ^* the electrical conductivity, K the permeability parameter, C_p the specific heat, σ the thermal diffusivity of the fluid, $v = (\mu_B / \rho)$ the kinematic viscosity, μ_B the static dynamic viscosity of Casson fluid, ρ the density of fluid.
and Q the volumetric heat generation/absorption coefficient.

The corresponding boundary conditions are:

$$u = ax, \quad v = by, \quad w = 0,$$

$$T = T_w \text{ at } z = 0,$$

$$u \to 0, \quad v \to 0, \quad T \to T_e \text{ as } z \to \infty,$$

where the fluid temperature of the wall is T_w.

Employing the transformations (Wang (1984) and Shehzad 	extit{et al.} (2012)):

$$u = ax f(\eta), \quad v = ay g(\eta),$$

one obtains

$$\left(1 + \frac{1}{\beta}\right) f'' + f + g = 0,$$

$$\left(1 + \frac{1}{\beta}\right) g'' + f + g = 0,$$

$$0 = f, \quad g = 0, \quad f' = 1, \quad g' = \alpha, \quad \theta = 0 \text{ at } \eta = 0,$$

$$f' \to 0, \quad g' \to 0, \quad \theta \to 0 \text{ as } \eta \to \infty,$$

where Q is the heat generation/absorption coefficient.

The homotopy solutions

According to HAM, the functions f, g, and θ by a set of base functions

$$[\eta^k \exp(-n\eta), k \geq 0, n \geq 0]$$

can be expressed as

$$f_m(\eta) = \sum_{n=0}^{\infty} a_{m,n} \eta^k \exp(-n\eta),$$

$$g_m(\eta) = \sum_{n=0}^{\infty} b_{m,n} \eta^k \exp(-n\eta),$$

$$\theta_m(\eta) = \sum_{n=0}^{\infty} c_{m,n} \eta^k \exp(-n\eta),$$

in which $a_{m,n}$, $b_{m,n}$, and $c_{m,n}$ are the coefficients. Initial approximations and auxiliary linear operators are given by

$$f_0(\eta) = \left[1 - e^{-\eta}\right], \quad g_0(\eta) = \beta \left[1 - e^{-\eta}\right], \quad \theta_0(\eta) = e^{\eta},$$

$$f' = f' - f', \quad g' = g' - g', \quad L_0 = \theta' - \theta.$$

The operators have the following properties

$$L_f(C_1 + C_2 e^{\eta} + C_3 e^{-\eta}) = 0,$$

$$L_g(C_4 + C_5 e^{\eta} + C_6 e^{-\eta}) = 0,$$

$$L_\theta(C_7 e^{\eta} + C_8 e^{-\eta}) = 0,$$

in which C_i $(i = 1 \ldots 8)$ show the arbitrary constants.

The pressure deformation problems can be obtained as:

$$(1 - p)L_f \left[f(\eta; p) - f_0(\eta) \right] = ph_f N_f \left[\dot{f}(\eta; p), \ddot{g}(\eta; p) \right],$$

$$(1 - p)L_g \left[\ddot{g}(\eta; p) - g_0(\eta) \right] = ph_g N_g \left[\dot{f}(\eta; p), \ddot{g}(\eta; p) \right],$$

$$(1 - p)L_\theta \left[\ddot{\theta}(\eta; p) - \dot{\theta}(\eta) \right] = ph_\theta N_\theta \left[\dot{f}(\eta; p), \ddot{g}(\eta; p), \ddot{\theta}(\eta; p) \right].$$
The fluid and are the special solutions.

is taken from 0 to 1 then and Casson fluid parameter is an embedding parameter, Figs. 2a and 3b describe the effects of Hartman number on the fluid velocities \(f'(\eta) \) and \(g'(\eta) \). The fluid velocities and their associated momentum boundary layer thicknesses are reduced with an increase in Hartman number.

Harman number has similar effects for the velocities \(f'(\eta) \) and \(g'(\eta) \). An increase in the Hartman number leads to a stronger Lorentz force.
Stronger Lorentz force creates a resistance in the fluid flow that appears in the reduction of velocities (see Figs. 2a and 2b).

![Graph of h-curves](image1)

Fig. 1. h-curves for the functions f, g and θ when $M = 0.6$, $\beta = 1.5$, $\alpha = 0.5$, $\lambda = 2.0$, $Pr = 0.9$ and $B = 0.3.$

Figs. 3a and 3b show that the larger values of Casson parameter β caused a decrease in the velocities $f'(\eta)$ and $g'(\eta)$. From these Figs. we analyzed that the fluid velocities and their associated momentum boundary layer thicknesses are decreasing functions of Casson parameter.

![Graph of M effects](image2)

Fig. 2. (a) Influence of M on $f'(\eta)$ and (b) for $g'(\eta)$ when $\beta = 1.5$, $\lambda = 2.0$ and $\alpha = 0.5$.

To see the influences of ratio parameter α, Prandtl number Pr, heat generation/absorption parameter B and porosity parameter on the temperature $\theta(\eta)$, Figs. 4 and 5 are sketched. Fig. 4a shows that the temperature $\theta(\eta)$ and thermal boundary layer thickness are increasing functions of ratio parameter α. Fig. 4b presents the variations of Prandtl number on the temperature. In this Fig. we have seen that the temperature and thermal boundary layer thickness are reduced for the larger Prandtl number. In fact the fluids with lower Prandtl number have higher thermal diffusivity. Higher thermal diffusivity gives rise to a decrease in temperature and lowers the thermal boundary layer thickness. The role of Prandtl number is to control the rate of cooling in conducting fluid. Fig. 5a is sketched to analyze the variations of heat generation/absorption parameter on the temperature. We have seen that an increase in B enhances the temperature and thermal boundary layer thickness. When heat generation parameter is increased, more heat is produced in the fluid that causes to a higher temperature and stronger thermal boundary layer thickness. Fig. 5b depicts the variation of porosity parameter on the temperature. An increase in porosity parameter shows a decrease in the temperature.
Fig. 4. (a) Influence of α on $\theta(\eta)$ when $M = 0.6, \beta = 1.5, \lambda = 2.0, \Pr = 0.9$ and $B = 0.4$. (b) Influence of \Pr on $\theta(\eta)$ when $M = 0.6, \alpha = 0.5, \beta = 1.5, \lambda = 2.0$ and $B = 0.4$.

Figs. 6 and 7 are plotted to see the effects of different physical parameters on the skin-friction coefficients $-(1+1/\beta)f'(0)$, $-(1+1/\beta)g'(0)$ and local Nusselt number $-\theta'(0)$. Fig. 6a shows the effects of Hartman number vs Casson parameter on $-(1+1/\beta)f'(0)$. By increasing M and β, the skin-friction coefficients increases. It can be seen form Fig. 6b that Hartman number and Casson parameter have similar effects on $-(1+1/\beta)g'(0)$.

A comparison of Figs. 6a and 6b shows that the skin-friction coefficient $-(1+1/\beta)f'(0)$ at the wall are greater than the skin-friction coefficient $-(1+1/\beta)g'(0)$.

A decrease in the local Nusselt number is noticed corresponds to the larger values of Hartman number vs Casson parameter (see Fig. 7a). From Fig. 7b we see that an increase in heat generation/absorption parameter leads to an increase in the local Nusselt number.

Figs. 8a and 8b show the variations in skin-friction coefficients $-(1+1/\beta)f'(0)$ and $-(1+1/\beta)g'(0)$ for different values of λ and α. Here we examined that the increasing values of λ and α lead a reduction in the skin-friction coefficients. From Figs. 9a and 9b, we observed that the local Nusselt number is an increasing function of λ, α and Pr.

Table 1 is computed to analyze the numerical values of $f'(0)$, $g'(0)$ and $\theta'(0)$ for the fixed values of involved parameters. Here we have seen that the solutions for velocities converge from 10th order of approximation whereas the solution for temperature converges from 40th order of deformations. Table 2 is computed for the comparison values of $f'(0)$, $g'(0)$, $f'(\infty)$ and $g'(\infty)$ for different values of α when $\beta \to \infty$ and $M = 1/\lambda = 0$. This Table shows that our solutions in limiting situations have an excellent agreement with the previous study (Wang (1984)).

5. CONCLUSIONS

The main results of present study can be summarized as follows:

- Hartman number M has quite opposite effects on the velocities and temperature.
- Casson fluid parameter β has similar behavior for the velocities $f'(\eta)$ and $g'(\eta)$ in a qualitative sense.
- Temperature increases by increasing in heat generation parameter B.
Increase in porosity parameter decreases the fluid temperature.

Skin-friction coefficient is increased for larger Casson fluid parameter.

Local Nusselt number is an increasing function of B vs α.

Fig. 6. (a) Effects of M vs β on $\frac{1}{\beta} f^\prime(0)$ and (b) for $\frac{1}{\beta} g^\prime(0)$ when $\alpha = 0.5$, $\lambda = 2.0$, $B = 0.3$ and $Pr = 0.9$.

Fig. 7. (a) Effects of M vs β on $-\theta(0)$ when $\alpha = 0.5$, $\lambda = 2.0$, $B = 0.3$ and $Pr = 0.9$. (b) Effects B vs α on $-\theta(0)$ when $M = 0.6$, $\lambda = 2.0$, $\beta = 1.5$ and $Pr = 0.9$.

Fig. 8. (a) Effects of λ vs α on $\frac{1}{\beta} f^\prime(0)$ and (b) for $\frac{1}{\beta} g^\prime(0)$ when $M = 0.5$ and $\beta = 1.5$.
Fig. 9. (a) Effects of λ vs α on $-\theta'(0)$ when $M = 0.5$, $\beta = 1.5$, $B = 0.3$ and $Pr = 0.9$. (b) Effects λ vs Pr on $-\theta'(0)$ when $M = 0.5 = \alpha$, $\beta = 1.5$ and $B = 0.3$.

Table 1 Convergence values of homotopic solutions for different order of deformations when $\beta = 1.5$, $\lambda = 2.0$, $M = 0.6$, $\alpha = 0.5$, $Pr = 0.9$, $B = 0.3$, $h_f = h_g = -0.7$ and $h_B = -0.9$.

<table>
<thead>
<tr>
<th>Order of deformations</th>
<th>$-f'(0)$</th>
<th>$-g'(0)$</th>
<th>$-h'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1.126000</td>
<td>0.504667</td>
<td>0.63100</td>
</tr>
<tr>
<td>10</td>
<td>1.106868</td>
<td>0.506429</td>
<td>0.40657</td>
</tr>
<tr>
<td>20</td>
<td>1.106868</td>
<td>0.506429</td>
<td>0.39747</td>
</tr>
<tr>
<td>30</td>
<td>1.106868</td>
<td>0.506429</td>
<td>0.39619</td>
</tr>
<tr>
<td>40</td>
<td>1.106868</td>
<td>0.506429</td>
<td>0.39593</td>
</tr>
<tr>
<td>45</td>
<td>1.106868</td>
<td>0.506429</td>
<td>0.39593</td>
</tr>
<tr>
<td>50</td>
<td>1.106868</td>
<td>0.506429</td>
<td>0.39593</td>
</tr>
</tbody>
</table>

Table 2 Numerical values of $f'(0)$, $g'(0)$, $f(\infty)$ and $g(\infty)$ for different values of α when $\beta = \lambda \to \infty$ and $M = 0$.

<table>
<thead>
<tr>
<th>α</th>
<th>$-f'(0)$</th>
<th>$-g'(0)$</th>
<th>$f(\infty)$</th>
<th>$g(\infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.25</td>
<td>1.0488</td>
<td>0.1945</td>
<td>0.9070</td>
<td>0.2579</td>
</tr>
<tr>
<td>0.50</td>
<td>1.0936</td>
<td>0.4652</td>
<td>0.8423</td>
<td>0.4516</td>
</tr>
<tr>
<td>0.75</td>
<td>1.1344</td>
<td>0.7946</td>
<td>0.7925</td>
<td>0.6120</td>
</tr>
<tr>
<td>1.0</td>
<td>1.1737</td>
<td>1.1737</td>
<td>0.7515</td>
<td>0.7515</td>
</tr>
</tbody>
</table>

REFERENCES

