Optimization Conditions For Determination of Cosmetic Preservatives using Ion-Exclusion Chromatography

Sid Kalal, H.*, Rafiei, J.¹, Bani, F.², Khanchi, A. R.¹ and Hoveidi, H.³

¹ NFRS, Nuclear Science and Technology Institute, AEOI, P. O. Box 11365-3486, Tehran, Iran
² Institute of Biochemistry & Biophysics (IBB), University of Tehran, Tehran, Iran
³ Graduate Faculty of Environment, University of Tehran, Tehran, Iran

ABSTRACT: An ion chromatography (IC) method for simultaneous determination of benzoic, salicylic and sorbic acids was developed. In this method the samples were purified by solid-phase extraction. The analytes were then eluted with methanol from C₁₈ cartridge. The separation was performed on ion-exclusion column by an isocratic elution with 0.25 mmol/L sulfuric acid solution containing 20% (v/v) acetone as elute. The calibration curves showed good linearity with suppressed conductivity detection. Under this condition, separation of the three components was achieved in less than 23 min. The detection limit calculated as the concentration corresponding to three times the background noise, was 0.1, 0.15 and 0.2 mg/L for benzoic acid, salicylic acid and sorbic acid respectively. The method was successfully applied to analysis of various cosmetic products.

Key words: Ion chromatography, Conductivity detector, Cosmetics, Preservatives

INTRODUCTION

Of important preservatives used to prolong the useful life of food, pharmaceuticals and cosmetic products are benzoic, salicylic and sorbic acids. Non-volatility and good stability are general properties of these compounds. Benzoic acid has an inhibition effect in the bacterial growth, while sorbic acid is effective against yeasts and moulds. Salicylic acid has antiseptic and dandruff properties. Combination of these compounds is increased the biochemical stability of food and cosmetic products for a long time (Raye et al., 2006; Rieger et al., 2001; Mitsui, 1997). In recent years, it has been increased interest in preservatives, due to the adverse side-effect of these preservatives, such as metabolic acidosis, convulsions, their tendencies to induce allergic contact dermatitis and even potentially inducing human breast tumors (Harveg et al., 2003; Marengo et al., 2004; Prevot et al., 2000; Mikami et al., 2002). Analysis of these compounds are often difficult because of matrix complexity. In addition, depending on the nature of the cosmetics, conditions of analysis are varied widely and are usually time-consuming (Salvador et al., 2007).

One of the important techniques in the separating and analyzing weakly acidic or basic compounds is ion-exclusion chromatography (IEC). This technique which based on a Donnan exclusion mechanism is a powerful technique in the separation of small organic acids (Novirc et al., 2006). Separation of organic acids are achieved by changing the pH, because at low pH weak organic acids are undissociated or weakly dissociated and can diffuse into the resin pores on the stationary phase. While, anionic and or
natural species are rejected. The aim of this study was to evaluate the ability and efficiency of ion exclusion column in combination with conductivity detector in the determination of benzoic, salicylic and sorbic acids in some of the samples consist of shampoos and a mouthwash.

MATERIALS & METHODS

HPLC grade acetone was purchased from Fluka. Sorbic acid was obtained from Applichem. Methanol (HPLC grade) and other reagents (analytical grade) were purchased from Merck. A Metrohm IC system consisting of the following components was used: 733 IC separation center with a 20µl injection loop; 762 IC interface; 732 IC conductivity detector; 709 IC pump and 753 suppressor module. Chromatographic separation was carried out on metrosep organic acid (10µm, 250*7.8 mm I.D., Metrolm Co.).

The chromatographic separation of benzoic, salicylic and sorbic acid was achieved with an Ion Exclusion column under isocratic condition at room temperature. A mixture of 0.25 mmol/L H₂SO₄ and acetone (80:20) was performed as the mobile phase at a flow rate of 0.5 ml/min. the chromatogram was recorded for 33 min. The column effluent was passed into the suppressor column that has been washed with 50 mmol/L LiCl solution, and then three acids were detected with a conductivity detector. Standard stock solutions of benzoic, salicylic and sorbic acid (1000 mg/L) were prepared by dissolving of appropriate amounts of respective compounds in 150ml of ultra pure water by mixing in ultrasonic bath at 40 °C. Then they were cooled to room temperature and diluted in a 200ml volumetric flask. Seven standard solutions were prepared. An aliquot (20 µl) of each standard was injected. The peak areas for each standard solution were measured and calibration curve plotted by IC Net software. All measurements such as correlation coefficient and RSD were measured by IC Net software. The cosmetic product (1g) was accurately weighed in a 10 ml volumetric flask and diluted with methanol. The mixture was mixed well and the suspension solution was centrifuged at 5000 rpm for 30 min. 100 µl of clear part of centrifuged solution was diluted to 2 ml with ultra pure water.

RESULTS & DISCUSSION

The preliminary experiments showed that the mixture of 0.5 mmol/L H₂SO₄ with acetone (20%) has a weak efficiency in resolution of salicylic acid and sorbic acid (Fig. 1a). So, the mobile phase composition was varied continually. At first, the organic phase was changed to acetonitrile, but it showed no change in comparison with acetone. Methanol has been tested but it wasn’t suitable to separate them. Finally, by modifying the acid concentration, two levels of acid, that is 1mmol and 0.25mmol/L H₂SO₄ in 20% of acetone were selected. At higher concentration (Fig. 1b) resolution was reduced and retention time of salicylic acid was increased but at lower concentration (Fig. 1c) resolution was increased and retention times were decreased. Therefore, the last mobile phase mixture was selected and applied to all of analysis.

Quantification was based on the external standard method using calibration curves fitted by linear regression analysis. Linearity between the concentration of all three acids and the conductivity signals are in Table 1. The calibration curves and correlation coefficients for sorbic acid, benzoic acid and salicylic acid are shown in Fig. 2a, 2b and 2c respectively. The limit of detection (LOD) is defined as the smallest peak detected with a signal height three times of the baseline in our work, LODs were estimated by successively decreasing the concentration of the prepared standards, down to the smallest detectable peak. The detection limit for benzoic acid, salicylic acid and sorbic acid were 0.1, 0.15 and 0.2 mg/L respectively.

Peak identification of the preservatives in various samples was based on the comparison between the retention times of standard compounds and was confirmed by spiking known standard compounds to the sample. Two Foreign shampoos (Nivea and Panten), an Iranian shampoo (Firoozbaby Shampoo) and an Iranian mouthwash (Irsha) were analyzed according to the experimental condition. None of three organic acids were detected in Iranian shampoo, but as shown in Fig 3 there was just benzoic acid as a preservative in both foreign shampoos as well as in mouthwash. Its quantity was approximately 1.2, 1.8, 3.6 mg/g in two shampoos and mouthwash respectively.
Fig. 1a & b. Chromatograms of standard solution

a. The concentrations of benzoic acid, salicylic acid and sorbic acid are 10 mg/L and the eluent is 0.5 mmol/L H₂SO₄ + 20% acetone (1. Salicylic acid, 2. Sorbic acid, 3. Benzoic acid).

b. The concentrations of benzoic acid, salicylic acid and sorbic acid are 20 mg/L and the eluent is 0.25 mmol/L H₂SO₄ + 20% acetone (1. Salicylic acid, 2. Sorbic acid, 3. Benzoic acid).
Fig. 1. c. Chromatograms of standard solution

The concentrations of benzoic acid, salicylic acid, and sorbic acid are 10 mg/L and the eluent is 1 mmol/L H₂SO₄ + 20% acetone (1. Sorbic acid, 2. Salicylic acid, 3. Benzoic acid).

Table 1. Analytical characteristic of IC method

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sorbic acid</th>
<th>Benzoic acid</th>
<th>Salicylic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear range mg/L</td>
<td>1-400</td>
<td>0.5-500</td>
<td>1-200</td>
</tr>
<tr>
<td>Regression equation</td>
<td>Y=0.9986X+0.7267</td>
<td>Y=0.9783X-1.2472</td>
<td>Y=1.0548X-0.7849</td>
</tr>
<tr>
<td>RSD %</td>
<td>1.231</td>
<td>1.236</td>
<td>7.545</td>
</tr>
<tr>
<td>R²</td>
<td>0.9998</td>
<td>0.9999</td>
<td>0.9995</td>
</tr>
<tr>
<td>LOD (mg/L)</td>
<td>0.2</td>
<td>0.1</td>
<td>0.15</td>
</tr>
<tr>
<td>LOQ (mg/L)</td>
<td>0.5</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 2. Recovery study

<table>
<thead>
<tr>
<th>Sample</th>
<th>Benzoic acid</th>
<th>Salicylic acid</th>
<th>Sorbic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Added (mg/L)</td>
<td>Recovery (%)</td>
<td>R.S.D (%)</td>
</tr>
<tr>
<td>Shampoo (Nivea)</td>
<td>1</td>
<td>97.5±2.9</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>98.0±1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Shampoo (Panten)</td>
<td>1</td>
<td>96.3±2.9</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>97.2±2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Mouthwash (Irsha)</td>
<td>1</td>
<td>98.5±2.3</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>98.7±3.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Fig. 2a, b & c. Calibration curves. a. sorbic acid b. benzoic acid c. salicylic acid

(a) Y = 0.9986x + 0.7267
R² = 0.9998

(b) Y = 0.9783x - 1.2472
R² = 0.9999

(c) Y = 1.0548x - 0.7849
R² = 0.9995
Fig. 3. chromatograms of real samples
(1. Benzoic acid). a. Irsha mouthwash, b. Nivea shampoo (Continues)
Fig. 4. Recovery study of real samples (1. Salicylic acid, 2. Sorbic acid, 3. Benzoic acid). a. Panten Shampoo was spiked with 1 mg/L of benzoic acid, salicylic acid and sorbic acid b. Panten Shampoo was spiked with 10 mg/L of benzoic acid, salicylic acid and sorbic acid.
In order to verify the precision and accuracy of the analytical method, all samples were spiked with two levels of standard of preservatives and analyses were carried out before and after the addition of 1 and 10 mg/L of benzoic acid, salicylic acid and sorbic acid. The results were summarized in Table 2. The Panten shampoos that were spiked with three organic acids are shown in Fig. 4.

CONCLUSION
A method has been developed for the determination of Benzoic, Salicylic acid and sorbic acids by a common ion exclusion column and a suppressed system with conductivity detector. This method is conveniently applicable for quantitative analysis of Shampoo samples and related Cosmetics. Despite the weak acidic nature of the mentioned acids, which cause of some difficulties in determination with conductivity detector in ordinary conditions, the results of experiments have been show that the usage of both C\textsubscript{18} non-polar bonded silica phase cartridge and suppressor can be compensate the deficiency of their weak signals. In addition, application of cartridge and suppressor have been improved the determination limits for each of the three acids considerably compared with the other reported methods (Chinnici et al., 2005; Helaleh et al., 2002; Yang et al., 2000; Ohto et al., 1991). In the separation of molecular or ionic species, it has been found that ion-exclusion mechanism to be affected by a large number of parameters. This behavior is considered as a great advantage for which, because degree of freedom in the selection of those parameters, can be increased the ability of the method for the analysis of other real cosmetic samples (Novirc et al., 2006).

REFERENCES

www.SID.ir