Antigliadin antibody in sporadic adult ataxia

Yaser Hamidian1, Mansoureh Togha2, Shahriar Nafisi3, Shahab Dowlatshahi4, Soodeh Razeghi Jahromi5, Nahid Beladi Moghadam6, Navid Namazi7, Parvin Tajik8, Masoud Majed9, Mahdi Aloosh10

1 Department of Radiology, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of Neurology, Sina Hospital, Tehran University of Medical Sciences AND Iran Neurological Research Center, Tehran, Iran
3 Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
4 Department of Gastroenterology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
5 Shefa Neuroscience Research Center, Tehran, Iran
6 Department of Neurology, Imam Hossein Hospital, Beheshti University of Medical Sciences, Tehran, Iran
7 Ministry of Health and Medical Education, Tehran, Iran
8 Department of Epidemiology, Tehran University of Medical Sciences, Tehran, Iran
9 Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
10 Research Development Center of Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran

Keywords
Celiac Disease-Idiopathic Ataxia-Gluten Ataxia-Prevalence

Abstract
Background: The most common neurologic manifestation of gluten sensitivity is ataxia, which accounts for up to 40% of idiopathic sporadic ataxia. Timing of diagnosis of gluten ataxia is vital as it is one of the very few treatable causes of sporadic ataxia and causes irreversible loss of Purkinje cells. Antigliadin antibody (AGA) of the IgG type is the best marker for neurological manifestations of gluten sensitivity. This study was conducted to measure the prevalence of gluten ataxia in a group of Iranian patients with idiopathic ataxia.

Methods: For 30 patients with idiopathic cerebellar ataxia, a questionnaire about clinical and demographic data was completed. Serum AGA (IgA and IgG) and antiendomysial antibody (AEA) were assessed. Gluten ataxic patients underwent duodenal biopsy. Magnetic resonance imaging was done for all patients to see if cerebellar atrophy is present.

Results: Only 2 patients had a positive IgG AGA (6.7%) who both had a positive AEA while none of them showed changes of celiac disease in their duodenal biopsies. Only presence of gastrointestinal symptoms and pursuit eye movement disorders were higher in patients with gluten ataxia.

Conclusion: Prevalence of gluten ataxia in Iranian patients with idiopathic ataxia seems to be lower than most of other regions. This could be explained by small sample size, differences in genetics and nutritional habits and also effect of serologic tests in clinical versus research setting. Further researches with larger sample size are recommended.

Introduction
Celiac disease, also known as gluten-sensitive enteropathy, is an immune mediated disorder in
some genetically predisposed individuals and is
determined by a chronic inflammatory intestinal
disease induced by an environmental precipitant,
gluten.1-4 The term “gluten” refers to the entire protein
component of wheat.5 The diagnosis of celiac disease
requires both a duodenal biopsy that shows the
characteristic findings of intraepithelial lymphocytosis,
crypt hyperplasia, and villous atrophy and a positive
response to a gluten-free diet.5

However, serological tests have an important role in
the management of patients with celiac disease and
provide the greatest chance of establishing the
diagnosis of celiac disease.2 These tests include
antigliadin antibody (AGA), antiendomysial antibodies
(EMA) and tissue transglutaminase (Ttg). IgA Ttg
antibody test has a greater than 90% sensitivity and
specificity for celiac disease. Antigliadin IgG and IgA
antibodies have a poor specificity and a poor
sensitivity, respectively, while endomysial IgA
antibodies are highly specific markers for celiac disease,
approaching 100% accuracy. So the gold standard in
celiac serologic tests is the IgA EEA.5,6

Diarrhea, the main classic presentation of celiac in
adults, is the presenting symptom in less than 50% of
cases.5 Approximately 8% to 12% of patients who have
celiac disease show neurologic symptoms, including
cerebellar ataxia, peripheral neuropathy, seizures, and
myelopathy.3,7,8 The most common neurologic
manifestation of gluten sensitivity is ataxia, the so-
called gluten ataxia (GA).9,13 Gluten ataxia is
characterized by progressive cerebellar ataxia affecting
mainly lower limbs10 and is commonly presented in the
absence of gastrointestinal symptoms.3 In fact, gluten
ataxia is the single most common cause of sporadic
idiopathic ataxia9,12 and accounts for up to 40% of cases
of idiopathic sporadic ataxia.13

Due to the marked cerebellar cortical atrophy with
cell loss in dentate and olivary nuclei14 and also
antibodies against Purkinje cells in patients with gluten
ataxia, it is suggested that the likely mechanism of
gluten ataxia is cross-reaction of antigliadin antibodies
with epitopes on cerebellar Purkinje fibers.7,8,13,16

In addition, GA with or without classical celiac
disease symptoms and enteropathy, responds to a strict
gluten-free diet.3,9,12,17 Considering that loss of Purkinje
cells is irreversible, timing of diagnosis of gluten ataxia
is vital as it is one of the very few treatable causes of
sporadic ataxia.9,13

Among the described autoantibodies, gluten ataxia
is associated with high AGA titers2 so that antigliadin
antibody of the IgG type is the best marker for
neurological manifestations of gluten sensitivity.18,19
Therefore, in populations which gluten ataxia accounts
for a high percent of idiopathic ataxia, AGA should be
measured for all patients with idiopathic ataxia.3,9

Celiac is not uncommon in Iran. Therefore, we
measured prevalence of gluten ataxia in group of
Iranian patients with idiopathic cerebellar
ataxia.9,10 Gluten ataxia is cross-reaction of antigliadin antibodies
against Purkinje cells in patients with
Idiopathic ataxia.9,10 Gluten ataxia is
cross-reaction of antigliadin antibodies
against Purkinje cells in patients with
Idiopathic ataxia.9,10

Materials and Methods

Patient selection

Over a period of 18 months from April 2006 to
October 2007, 30 patients with idiopathic cerebellar
ataxia were enrolled in a case-series study. Patients
were identified through a review of the charts at
neurology wards of four hospitals (Sina Hospital,
Imam Khomeyni Hospital, Imam Hoseyn Hospital
and Shariati Hospital) in Tehran.

Presence of progressive cerebellar ataxia without
a definite diagnosis was the prerequisite for
enrollment in the study. Patients with a malignancy,
mass or ischemia or hemorrhage in posterior fossa, a
positive VDRL test, abnormal thyroid function test, a
positive family history of ataxia, long use of anti-
epileptic drugs, a history of alcohol abuse, and
Wilson disease if less than 40 years old were
excluded.

After obtaining informed consent, questionnaire
about clinical and demographic data was filled. All
patients were tested for antigliadin antibody (IgA
and IgG). If one of two types of antigliadin was
positive, patient was considered as suffering “gluten
ataxia”. In gluten ataxic patients, antiendomysial
antibody was measured and a biopsy of duodenum
was performed to detect patients with celiac disease.
The study was approved by Ethics Committee of
Tehran University of Medical Sciences. In addition, to
see if cerebellar atrophy is present, magnetic
resonance imaging (MRI) was done for all patients.

Antibody assays

Antigliadin antibody titers (IgG and IgA) were
measured using a commercially available enzyme-
linked immunoassay (ELISA) kit (ORG 534A and
ORG 534G, ORGENTEC Diagnostica GmbH, Mainz,
Germany).

According to the manufacturer’s instructions, an
IgA value >15 U/ml and also IgG value > 15 U/ml
were considered positive. On serum samples
(dilution of 1:10), AEA was assessed using a
commercially available immunofluorescence assay
kit (FA 1911AG-A, EUROIMMUN Medizinische
Labordiagnostika A G, Lübeck, Germany)

Statistical analysis

Differences in demographic and clinical data were
assessed between AGA positive and negative
patients using the chi-square test (with fisher exact
test) for categorical variables and the Mann-Whitney
U test for continuous variables.
Results
Among 30 patients, 18 were men (60%) and mean age was 42 years. Mean of duration of ataxia was 5 years. Only one patient did not have gate ataxia. Upper and lower limb ataxia was detected in 7 and 14 patients, respectively. MRI study showed a mild cerebellar atrophy in 7 patients (23.3%) and a severe atrophy in 10 patients (33.3%). Eight patients had ocular signs [all had a nystagmus and 7 had problems in pursuit of eye movement (PMD)] and 19 patients suffered dysarthria. Other neurologic signs included left hand paresthesia (one patient), abnormal position sense (one patient), sustained clonus on ankle joints (one patient), mild psychomotor retardation and bradykinesia (one patient), reduced blinking (one patient) and hyperreflexia in another patient. Gastrointestinal symptoms were present in three patients. One was constipated, another patient suffered from abdominal bloating. Diarrhea and weight loss was present in the other one. Average duration of gastrointestinal symptom in these three patients was 2.6 years. IgA AGA of none of patients was positive while IgG AGA was positive in 2 patients (6.7%) who were considered gluten ataxic. AEA of these two patients was positive and none of them showed changes of celiac disease in their duodenal biopsies. As it is shown in table 1, only presence of gastrointestinal symptoms and pursuit eye movement disorders were higher in patients with gluten ataxia.

Discussion
While serological screening in healthy volunteers around the world has estimated the prevalence of celiac to be about 0.5-1.0%,2,5-7 in a study from Italy celiac disease was found in 12.5% of patients with idiopathic ataxic group and 0% in other ataxic patients.8 In another study from Finland which was done on 44 patients it was 16%.9 Overall, in different studies celiac disease was found in 16% (4 of 25), 16.7% (4 of 24), 12.5% (3 of 24), and 1.9% (2 of 104) in sporadic ataxia.12

Regarding serologic tests, gluten ataxia was found to be 12 out of 104 (11.5%) amongst idiopathic ataxias in a study in Germany.9 In USA, it was found in 27% of idiopathic ataxic patients9 while it was 14% in Canada.3 In summary, prevalence of antigliadin antibodies has been reported as much as 11.5 to 68% of patients with sporadic ataxias as opposed to 4-12% in a control population.3,9,20-22

Consequently, antigliadin antibodies and celiac disease seem to be more prevalent in ataxic patients than in general population. But although initial studies found a significant and strong association between ataxia and gluten sensitivity12 this association does not appear as robust as initially reported. Recently, the association was seen in many studies3,20 while other studies have failed to find an association. For example, although antibodies were positive in 8% of the controls and 19% of patients with sporadic ataxia in a study, no statistically significant differences between the groups was observed.22 In another study, none of 20 patients with idiopathic ataxia showed serologic evidence of celiac disease.23 Moreover, a report from Spain describes 32 patients with idiopathic ataxia who were screened for gluten ataxia but none of them found to have antigliadin antibodies and they reported prevalence of 0% for gluten ataxia in their idiopathic ataxic patients.9

In our study, AGA and AEA were positive in 6.7% of patients and none of them showed celiac disease in duodenal biopsies which is lower than most of other studies. However, there are reports which found lower prevalence of gluten ataxia and celiac disease than our study. In addition to small sample size,

---

Table 1. Univariate analysis of IgG antigliadin antibody

<table>
<thead>
<tr>
<th>Variable</th>
<th>Positive IgG (n = 2)</th>
<th>Negative IgG (n = 28)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>Male</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>GI disorder</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Nystagmus</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Pursuit of eye movement</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Ocular problem</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Dysarthria</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Upper limb ataxia</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Lower limb ataxia</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Gate ataxia</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Atrophy</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Quantitative</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Age (year)</td>
<td>43.2</td>
<td>15.7</td>
</tr>
<tr>
<td>Ataxia duration (year)</td>
<td>5.0</td>
<td>4.1</td>
</tr>
<tr>
<td>GI disorder duration (year)</td>
<td>3.5</td>
<td>2.1</td>
</tr>
</tbody>
</table>
genetics and geographic differences could account for low prevalence in our study. In Iran, minimum prevalence of gluten sensitivity has been reported as 1:166 in healthy blood donors and 1:104 in general population of northern and southern Iran and the estimated prevalence of celiac disease was 1:700.16,24,25 Although not rare, it is lower than 1% estimated prevalence of celiac disease was reported in the population of northern and southern Iran and the prevalence of gluten sensitivity has been reported as 1:700.16,24,25

Although not rare, it is lower than 1% estimated prevalence of celiac disease was reported in the population of northern and southern Iran.24 It may be argued that the continuous high level of exposure to wheat proteins has induced some degree of immune tolerance, leading to milder symptoms and negative serologic tests.26,27

The prevalence of gluten sensitivity amongst familial ataxias did not differ from what was found in the normal population, suggesting no etiological link between these types of ataxia and gluten sensitivity.9 Due to the lack of genetic study and HLA-typing in our study, some cases were probably of familial type which decreased the prevalence of gluten ataxia in our patients.

Role of serologic tests must be considered in interpreting results of this study. The lower sensitivity of serologic tests in the diagnosis of gluten sensitivity in the clinical practice compared to the research setting has been described previously. Lack of standard commercial assay used to measure antigliadin was a problem in assessing prevalence of gluten ataxia and causes a wide range of it among different studies.2,3,5-6 In addition, IgG antigliadin antibody titer in patients with gluten ataxia was lower than that in patients with celiac disease without neurological illness.9 Therefore, if antigliadin assay is set so as to have high specificity for celiac disease, it might cause lower sensitivity by itself.9

In our study in both patients with positive AGA, IgG was positive but IgA was absent. In fact, IgA AGA and antiendoinsomal antibodies lack sensitivity and specificity when used in a neurological population and IgG AGA is a better marker of the whole spectrum of gluten sensitivity irrespective of the organ involved.9 However, results of IgG AGA should be interpreted cautiously because the specificity of IgG AGA is lower than that of IgA AGA in diagnosis of gluten sensitivity.20

In this study, only PMD and gastrointestinal symptoms were significantly higher in patients with gluten ataxia when compared to other idiopathic ataxic patients, but other neurologic features were not significantly different. The absence of distinctive neurological features in ataxic patients with celiac disease suggests that in populations which gluten ataxia accounts for a high percent of idiopathic ataxia, AGA should be measured for all patients with idiopathic ataxia.3,8

Conclusion
Prevalence of gluten ataxia in Iranian patients with idiopathic ataxia (6.7%), seems to be lower than most of other regions. This could be explained by small sample size, differences in genetics and nutritional habits and also the effect of serologic tests in clinical versus research setting. Therefore, it is needed to perform further researches with larger samples to measure prevalence of gluten ataxia in Iranian patients.

Acknowledgment
We thank the Iran Neurological Research Center (affiliated to Tehran University of Medical Sciences) for their financial support and the patients for their kind cooperation.

References