NEW RECORDS OF SARGASSUM SPECIES (SARGASSACEAE, PHAEOPHYTA) FROM THE PERSIAN GULF AND OMAN SEA IN IRAN

M. Shams, S. Afsharzadeh, Gh. Balali, T. Valinassab & O. De Clerck
Received 06.04.2013. Accepted for publication 06.11.2013.

The genus Sargassum C. Agardh (Sargassaceae, Fucales), despite considerable research efforts, is still one of the most systematically complex and problematic genera of Phaeophyta. The marine algal flora of Iran received little attention than other marine water bodies. This paper describe 7 species as Sargassum new records along the Iranian coasts including Sargassum baccularia (Mertens) C. A. Agardh, S. binderi Sonder, S. gemmiphorum Tseng et Lu, S. longifructum Tseng et Lu, S. henslowianum C. Agardh, S. boveanum J. Agardh var. aterrimum Grunow and S. spinuligerum Sonder. The more consistent morphological characters for each species were recognized and these characters include: Holdfast shape, length/width leaves, leaves margin and apex, vesicles and receptacles shape. The most common species were S. spinuligerum, S. baccularia, S. henslowianum and S. longifructum distributed widely in Sistan va Baluchestan province and S. binderi, S. boveanum var atterimum restricted to Bandar Langeh and Bushehr province, respectively.

Masoumeh Shams <m.shams@sci.ui.ac.ir>, Saeed Afsharzadeh (correspondence <s.afshar@biol.ui.ac.ir>) and Gholamreza Balali <grbalali@gmail.com>, Department of Biology, Faculty of Science, University of Isfahan, Islamic Republic of Iran. – Toraj Valinassab <T_valinassab@yahoo.com> Marine Resource Management, Iranian Fisheries Research Organization, Tehran, Iran. – Olivier De Clerck, Research Group Phycology and Centre for Molecular Phylogenetics and Evolution, Department of Biology, Faculty of Science, Ghent University, Belgium.

Key words. Sargassum, Phaeophyta, Persian Gulf and Oman Sea, Iran.

گزارشهای جدید گونه‌های سارگاسوم (سارگاسوم- فوئوبیت) از سواحل خلیج فارس و دریای عمان در ایران

معصومه شمس، دانشجوی دکتری گروه زیست‌شناسی دانشگاه اصفهان.
سعید افشارزاده، استادیار گروه زیست‌شناسی دانشگاه اصفهان.
غلامرضا بلالی، دانشیار گروه زیست‌شناسی دانشگاه اصفهان.
تورج ولی نسب، دانشیار مؤسسه تحقیقات علوم شیلاتی ایران.

البیر دی کلرک، استاد دانشمند گروه زیست‌شناسی دانشگاه گنت، بلژیک.

INTRODUCTION

Sargassum C. Agardh (Sargassaceae) is a very large brown seaweed genus including nearly 500 species. It is an ecologically dominant genus in shallow waters throughout subtropics and tropics of both hemispheres, especially in the Indo-west Pacific region and Australia (Nizamuddin & Gessner 1970; Tseng & al. 1985; Yoshida 1988). Iran is a temperate country in Asia with a coastline of approximately 2510 kilometers along the Persian Gulf and Oman Sea. There have been some systematic studies about Sargassum in the Persian Gulf and Oman Sea. Previous phycological studies in Persian Gulf were compiled by Endlicher and Diesing (1845), Børgesen (1939), Nizamuddin & Gessner (1970) and Basson (1992), and more ecologically oriented research was conducted by Sheppard & al. (1992). In addition, Sohrabipour and Rabii (1999) have identified 6 Sargassum species in this area, while Gharanjik (2005) reported five Sargassum species in Sistan va Baluchestan coast (Oman sea) in southeast of Iran. Recently, Shams & al. (2013) reported 19 Sargassum species in Persian Gulf and Oman Sea. In the south of Iran, Sargassum species with more than 40 tons annual biomass production have been considered as economically important phaeophyta. Sargassum spp. is a potential source of alginate, which used as food (soup and salad), liquid fertilizer and animal feed sand for the control of heavy metal pollution, grain crops enhances their production, as source of vitamins. Sargassum spp. are sources for many metabolites such as alginic acid, alginates, sulfated fucoidans, pigments, oils, sterols and mannanitols (Wong & al. 2004). In addition, fucoidans from Sargassum were discovered to have antitumor (Yamamoto & al. 1984) and cytotoxic activities (Stevan 2001). Members of the genus Sargassum exhibit a high degree of age-dependent morphological variations (Aug & Trono 1987; Kilar & al. 1992). In general, there is limited information about Sargassum populations and the studies performed mainly concern the identification of species by using morphological characters. This paper describe 7 species as Sargassum new records along Persian Gulf and Oman Sea coast of Iran including of Sargassum baccaluria (Mertens) C. A. Agardh, S. binderi Sonder, S. gemmiphorum Tseng et Lu, S. longifructum Tseng et Lu, S. henslowianum C. Agardh, S. boveanum J. Agardh var. aterrimum Grunow and S. spinuligerum Sonder.

MATERIAL AND METHODS

The specimens were collected from 15 stations along the Persian Gulf and Oman Sea including: Sistan va Baluchestan province; Bandar Lengeh area; Qeshm Island, Hormoz Island, Bushehr province (Fig. 1) from November 2010 to July 2012 (especially in winter and autumn). Whole thalli (usually with holdfast) were collected on reef flats at low tide or by SCUBA from a variety of habitats to 4 m depth. At each site, 20 individuals were selected randomly with a minimum distance of at least 3 m. Sargassum specimens were kept in separate plastic bags from each site without seawater and transported to the laboratory on ice (Lobban et al., 1988; APHA 2005). All of the species collected during this study belonged to subgenus Sargassum. According to available identification keys and taxonomic references, we examined the morphological features (aspect of holdfasts, axes, leaves, vesicles and receptacles) of samples. The morphological characters used for analysis were thallus length, stem, primary and secondary branch, leaf length, width, shape in apex and base, vesicle length, width, pedicle and receptacle shape and length. Some of the collected samples were fixed in %4 formaldehdy, and the reminder was dried on herbarium sheets. Important parts of the thallus were drawn, and sections of receptacles were prepared and stained with %1 aniline blue. Identification of samples were based on the following taxonomic references: C. A. Agardh (1820); J. G. Agardh (1848, 1889); Grunow (1915); Setchell (1935); Børgessen (1939); Tseng (1983, 1985, 2000); Yoshida (1988, 2004, 2005); Basson (1992); Tseng & Lu (1992); Noro & al. (1994); De Clerck & Coppejans (1996); Ajisaka & al. (1999), Noiraksar & al. (2006); Noiraksar & Ajisaka (2008), Abdel-Kareem (2009). Specimens were studied using a Stemi 2000-C Zeiss stereomicroscope and photographed with a Canon Power shot G6 camera. In addition, in this study, the species were checked with available specimens of Belgium, Mexico, Australia, Indian Ocean and Japan in Ghent herbarium. Iranian Sargassum species are deposited at the Herbarium of the University of Isfahan (HUI).

RESULTS

All of the Sargassum species commonly grow on rocks and dead corals in littoral and sub-littoral sites. Sargassum species were made from different sites along the Persian Gulf coast, identified as presented in the literatures, checked for synonymy-accepted names with www.algaebase.org site, referred to its systematic groups. Sargassum density is much higher in Sistan va Baluchestan and Hormozgan provinces than the other sites. An identification key to the Sargassum species of Iran is presented here.

The identification key for the new records of the Iranian Sargassum species

1- Thalli with rhizoidal to discoid holdfast, primary branches warty 1. S. spinuligerum

Thalli with discoid to conical holdfast, primary
Fig. 1. Study area and localities of collection for Sargassum along the Persian Gulf and Oman Sea seashore of Iran. Sistan va Baluchestan province (61° 30’ N, 25° 14’ E); Bandar Lengeh (54° 52’ N, 26° 32’ E); Qeshm Island (55° 23’ N, 26° 34’ E); Hormoz Island (56° 29’ N, 27° 22’ E); Bushehr province (50° 44’ N, 28° 55’ E).

branches smooth and without spines 2
2- Receptacles triquestrous, verrucose sometimes twisted 3
Receptacles simple and cylindrical 4
Receptacles less than 2 cm long 2. S. baccularia
Receptacles more than 2 cm long 3. S. longifeructum
Basal leaves simple or divided, larger than of upper leaves, warty stem 4. S. gemmiphorum
Basal leaves simple or divided, larger than of upper leaves, smooth stem 5
Vesicles spherical to ellipsoidal, rounded at apex, simple and cylindrical stalk, vesicle surface bearing cryptostomata 5. S. henslowianum
Vesicles spherical, entire, sometimes mucronate the apex, stalk terete and cylindrical, vesicle surface lacking of cryptostomata 6
Vesicles pointed, often crowned with mucronate at the apices, flattened stalk; receptacles flattened, often twisted 6. S. binderi
Vesicles spindle-shaped, bearing of leaflet, mucronate pointed, terete, cylindrical stalk, receptacles receptacles cylindrical, not twisted 7. S. boveanum var aterrimum

Description of the species
Order: Fucales
Class: Phaeophyceae
Family: Sargassaceae
Genus: Sargassum
Sargassum baccularia (Mertens) C. A. Agardh

C. A. Agardh (1820); Setchell (1935); Tseng & Lu (1992); Ajisaka & al. (1999); Gavino & Trono (1999), Noiraksar & al. (2006); Noiraksar & Ajisaka (2008).

Fucus baccularia Mertens Basionym:

Heterotypic synonyms: *Fucus baccularia* Mertens

Holdfast discoid, up to 15 mm in diameter. Stem terete, warty, up to 2.5 mm in diameter and 1 cm long. Primary branches terete, smooth, up to 100 cm long and 1.5 mm in diameter; leaves large, lanceolate, simple, without asymmetrical bases, up to 4 cm long and 1 cm wide, with rounded to acute apices, margins dentate with small teeth, midribs distinct near apices, cryptostomata small and scattered to in rows on both sides of the midrib. Secondary branches spirally arranged, terete, smooth, up to 30 cm long. Leaves lanceolate to linear, simple with asymmetrical bases, up to 4 cm long and 1 cm wide, with rounded apices, margins dentate with small teeth. Vesicles spherical, sometimes elliptical, up to 40 mm long, to 3 mm wide, entire at the apices, sometimes mucronate, stalks terete, usually shorter than the vesicles (Fig. 2). Plants dioecious. Male receptacles long, terete, up to 1 cm long and 2 mm wide, with smooth surface, simple to once to twice furcate. Femal receptacles triquetrous, up to 10 mm long and 2 mm wide, with a warty surface, sometimes bearing spines near the apex, simple to furcate. Female and male receptacles arranged in a raceme, pseudovaginal, vesiculate.

Habitat: Reef flats and subtidal zone.

Ecology: This species usually grows in the lower...
portions of the intertidal zone on rocky substrates or shallow subtidal zones. It has been found only in Sistan va Baluchestan province (Chabahar, Passabandar, Gowatr).

Sargassum binderi Sonder
J. G. Agardh (1848, 1889), Setchell (1935); Yoshida (1988); Tseng & Lu (1992); Ajisaka et al. (1999); Gavino & Trono (1999), Noiraksar et al. (2006); Noiraksar & Ajisaka (2008).

Holdfast discoid, up to 10 mm in diameter. Stem terete, smooth or warty, up to 2.5 mm in diameter and 1 cm long. Primary branches flattened to compressed, smooth, up to 40 cm long and 3 mm in diameter; leaves large, lanceolate, simple, with asymmetrical bases, up to 5.5 cm long and 1.5 cm wide, with rounded to acute apices, margins entire to denticate with small teeth, midribs distinct near apices or vanishing midway, small cryptostomata and scattered to in rows on both sides of the midrib. Secondary branches spirally arranged, compressed, smooth, up to 40 cm long. Leaves lanceolate to linear, simple with asymmetrical bases, up to 5.5 cm long and 1.5 cm wide, with rounded apices, margins dentate with sharp teeth. Vesicles spherical, sometimes elliptical, up to 20 mm long, to 4 mm wide, often mucronate at the apices, sometimes entire, stalks flattened, usually longer than the vesicles (Fig. 3). Plants monoecious. Receptacles androgynous, flattened, often twisted, up to 1.6 cm long and 2 mm wide, sharply denticate at the margin, simple to once to twice furcate. Receptacles arranged racemously and acantho-zygocarpic.

Habitat: Coral flats and subtidal zone.

Ecology: This species grows in the lower portions of the intertidal zone on rocky substrates or shallow subtidal zones. It has been found only in Hormoz and Qeshm Islands and Bandar Lengeh area.

Sargassum boveanum J. Agardh var. aterrimum
Grunow
J. G. Agardh (1848, 1889); Børgeresen (1939); Basson (1992); De Clerck & Coppejans (1996).

Thallus up to 25 cm long, erect, attached to the substratum by a small perennial holdfast, up to 5 mm in diameter. Branching of the main axis, alternating. Side branchlets alternate or opposite, may obscuring the axis of the branch. Leaves lanceolate to linear, simple with asymmetrical bases, up to 5-12 mm long and 0.3-0.5 mm wide, thin, with rounded apices, margins entire, midribs distinct near apices, cryptostomata small and scattered on both sides of the midrib. Vesicles sub spherical up to 2 mm wide and 2-4 mm long, some with terminal mucronate up to 4 mm long, stalks terete, usually to 2 mm long (Fig. 4). Receptacles in axillary clusters, simple, cylindrical, 2-3 mm long and zygocarpic.

Habitat: Reef flats and subtidal zone.

Ecology: This species grows in the lower portions of the intertidal zone on rocky substrates or shallow subtidal zones. It has been found Bandar Lengeh area, Bushehr province.

Sargassum gemmiphorum Tseng et Lu
Tseng & Lu (1992)

Holdfast conical, up to 1 cm in diameter. Thallus yellow brown, more than 35 cm in height. Axes cylindrical to 2 cm long, 1.5 mm in diameter, verrucose on the surface, several primary branches arising from the upper parts of the axes, with leaves dropped. Primary branches flattened below, compressed above, up to 45 cm long and 1.5 mm in diameter; the primary branches, some subspherical, other oblong, verrucose. Secondary branches arising from axes of the primary branches, compressed, short to 12 cm long, 1 mm wide. Basal leaves long-lanceolate, thin and membranous, usually 2-3 pinnately forked, up to 6 cm long and 4 mm wide, with acute apices, more regularly cuneate at the base, with percurrent midrib, slightly raised margins; cryptostomata small and scattered in rows on both sides of the midrib, denticate at the margins. Upper leaves slender, linear, sometimes once or twice pinnately divided, to 4 cm long, 3 mm wide. Vesicles small, subspherical, sometimes ovate, up to 3 mm long, to 2-3 mm wide, rounded at the apex, with 2-3 cryptostomata on the surface; stalks terete, slender and cylindrical usually 5 mm long, 1 mm in diameter (Fig. 5).

Plants dioecious. Male receptacles long, terete, up to 10 mm long and 1 mm wide, with smooth surface, simple to once to twice furcate. Female receptacles conical, smooth or verrucose on the surface, up to 3 mm long and 1 mm wide, simple or forked. Female and male receptacles arranged racemosely.

This species is mainly characterized by its conical holdfast, cylindrical axes, often 1-2 pinnately divided, verrucose on the surface, thin and narrow leaves, often 1-2 pinnately divided, denticate at margins.

Habitat: Reef and coral flats and subtidal zone.

Ecology: This species has been found only in Sistan va Baluchestan province (Chabahar, Gowatr, Kacho).

Sargassum henslowianum C. Agardh
C. A. Agardh (1820); Setchell (1935); Tseng (1983, 1985).

Thalli about 60 cm in high, arising from discoid holdfast, growing on lower intertidal to subtidal rocks. Main axes short, cylindrical, 1.5 cm long, bearing primary branches from their portions. Primary branches compressed, bearing many secondary branches at their
Plants dioecious. Male receptacles long, cylindrical, simple to slightly forked, wart-like on the surface, 6 mm long, 1 mm wide. Female receptacles fusiform, 4-6 mm long, 1 mm wide. Female and male receptacles arranged in a raceme and malacocarpic.

Habitat: Reef flats and subtidal zone.

Ecology: This species grows in the lower portions of the intertidal zone on rocky substrates or shallow subtidal zones. It has been found only in Sistan va Baluchestan province (Tang, Passabandar, Gowatr).

Sargassum longiflorum Tseng et Lu

Tseng & Lu (1992); Ajisaka & al. (1999); Noiraksar & Ajisaka (2008).

Holdfast discoid, up to 15 mm in diameter. Stem terete, smooth, up to 2.5 mm in diameter and 3 cm long. Primary branches terete to subterete, smooth, up to 50 cm long and 2 mm in diameter; leaves linear-lanceolate to linear-elliptical, simple, with asymmetrical to cuneate bases, up to 3 cm long and 9 mm wide, with rounded to acute apices, margins entire to dentate with small teeth, midribs distinct near apices, small cryptostomata and scattered to in rows on both sides of the midrib. Secondary branches spirally arranged, terete, smooth, up to 2.5 cm long. Leaves linear-lanceolate to linear-elliptical, simple, with asymmetrical bases, up to 3 cm long and 6 mm wide, with acute to rounded apices, margins entire to dentate with small teeth. Vesicles spherical, sometimes obovoid or elliptical, up to 40 mm long, to 2.8 mm wide, entire at the apices, sometimes provided with appendages, stalks terete to flattened, usually shorter than the vesicles (Fig. 7).

Plants dioecious. Male receptacles long, terete to slightly compressed and with a few spines at the apex, up to 2 cm long and 1.3 mm wide, simple to once to twice furcate. Female receptacles flattened and sometimes triquetrous, up to 1.8 cm long and 3 mm wide, margins dentate with spines, sometimes twisted, simple to once to twice furcate. Female and male receptacles arranged in a raceme, psudozygocarpic, vesiculate and leaf.

Habitat: Reef flats and subtidal zone.

Ecology: This species usually grows in the lower portions of the intertidal zone on rocky substrates or shallow subtidal zones. It has been found only in Sistan va Baluchestan province (Chabahar, Gowatr and Tang).

Sargassum spinuligerum Sonder

C. A. Agardh (1820); Tseng (1983); Ajisaka & al. (1999); Gavino & Trono (1999); Noiraksar & al. (2006); Noiraksar & Ajisaka (2008)

Heterotypic Synonyms: Sargassum spinuligerum var. crispata f. angustifolia Grunow, Sargassum spinuligerum var. crispata f. asperrima Grunow, Sargassum spinuligerum var. stenophylla Grunow, Sargassum spinuligerum var. stenophylla f. intermedia Grunow

This species grows in the lower portions of the intertidal zone on rocky substrates or shallow subtidal zones. It has been found Sistan va Baluchestan (Chabahar, Drak, Gowatr) province.

DISCUSSION

In this study, 7 species of *Sargassum* are reported which are new records for Iran. *S. spinuligerum*, *S. baccularia* and *S. longiflorum* were found only in Sistan va Baluchestan province and *S. boveanum var aterrimum* and *S. binderi* were found in Bandar Lengeh area and Bushehr (Heleyeh site and Lian Park). *S. binderi* was differentiated from others by compress branches and monoecious receptacles, but we can easily identify them from shape of vesicles. *S. binderi* has been characterized by the receptacles with sharply

www.SID.ir
spinous margin. Womersley & Bailey (1970) suggested that S. binderi was a synonym of S. oligocystum. However, we retain S. binderi on the basis of its character receptacles with a clear spinous margin. S. binderi from Iran closely similar to specimens reported from Thailand and China (Noiriskadar et al. 2006; Tseng & Lu, 1992) in the morphology of its vesicles and receptacles. S. baccalaria and S. spinuligerum are often misidentified as they share some morphological characters especially in young plant. Both species have spines on the branches. S. baccalaria and S. spinuligerum are dioecious and share a few characteristics such as presence of spines on branches and spherical vesicles. In the present study, according to the results, we understand S. spinuligerum is similar to S. baccalaria. In this survey, S. henslovianum and S. gemmiphorum had furcated leaves bearing dispersed thinner cryptostomata, but S. binderi had large cryptostomata on the leaves (Gavino & Trono 1999; Noraksar & Ajisaka 2008). S. longifeructum identified according to twisted receptacles than others. Also, S. boveanum var aterrimum observed only on Bushehr province. In general, S. longifeructum belongs to Zygocopiceae section and S. baccalaria and S. henslovianum belongs to Malacocarpiceae section. In summary, S. spinuligerum and S. binderi belong to Sargassum and Binderianae sections, respectively. Accordingly, our taxa is constituted Subgenus Sargassum with four sections.

ACKNOWLEDGMENT

The authors gratefully acknowledge University of Isfahan for supporting financial and academic supports.

REFERENCES

Børgesen, F. 1939: Marine algae from the Iranian Gulf. Scientific investigations in the Iran. - Copenhagen, Denmark.

Noro, T., Ajisaka, T. & Yoshida, T. 1994: Species of Sargassum Subgenus Sargassum (Fucales) with Compressed Primary Branches. In: Taxonomy of
Shams, M., Afsharzadeh, S., Balali, Gh & De Clerck, O. 2013: Revision Sargassum species (Fucals, Phaeophyceae) from Persian Gulf and Oman Sea (Iran) based on morphological and phylogenetical analyses. -18th National Symposium on Applied Biological Sciences, on February, Ghent University, Ghent, Belgium.

Fig. 2. Sargassum baccularia (Mertens) C. Agardh. a) Habit, b) leaves, c) vesicles, d) Female receptacles, e) Male receptacle f) transverse section of female receptacle, g) transverse section of male receptacle.
Fig. 3. *Sargassum binderi* Sonder. a) Habit, b) leaves, c) vesicles, d) receptacles, e) transverse section of receptacle.

Fig. 4. *Sargassum boveanum* var *aterrimum* J. Agardh. a) Habit, b) leaves, c) vesicles, d) receptacles, e) transverse section of receptacle.

Fig. 5. *Sargassum gemmiphorum* Tseng and Lu a) Habit, b) leaves, c) vesicles, d) receptacles, e) transverse section of receptacle.
Fig. 6. *Sargassum henslowianum* C. Agardh. a) Habit, b) leaves, c) vesicles, d) receptacles, e) transverse section of receptacle.

Fig. 7. *Sargassum longifructum* Tseng et Lu. a) Habit, b) leaves, c) vesicles, d) Female receptacles, e) Male receptacles, f) transverse section of female receptacle, g) transverse section of male receptacle.

Fig. 8. *Sargassum spinuligerum* Sonder. a) Habit, b) leaves, c) vesicles, d) receptacles, e) transverse section of receptacle.