MEGAGAMETOPHYTE AND EMBRYO DEVELOPMENT IN FIVE SPECIES OF ASTRAGALUS (FABACEAE)

M. Farhangisabet, A. Majd, T. Nejadsattari, A.A. Maassomi & A. Mazouji
Received 01.05.2011. Accepted for publication 10.08.2011.

The development of the megagametophyte, embryo and the endosperm in Astragalus eriocarpus (sect. Malacothrix), A. glaucacanthus (sect. Poterion), A. remotijugus (sect. Caprini), A. chrysostachys (sect. Hymenostegis) and A. compactus (sect. Rhacophorus) were examined. The ovule are campylotropous, bitegmic and crassinucellate; integuments form a zig-zag shaped microlyte. The embryogenesis was similar in the species. Megagametophyte development follows the monosporic Polygonum type and the embryo development follows the Onagrad type. The fusion of the polar nuclei, development of the endosperm, digestion of the nucellus, seed abortion and suspensor development show major differences among studied species. Furthermore, the size and shape of the suspensor is quite variable among the five species. These characters are compared with the other species of Astragalus and also their phylogenetic significance is discussed. Also we describe a case of polyembryony for the first time in A. remotijugus.

Mojgan Farhangisabet (correspondence, mfarhangis@yahoo.com) and Taher Nejadsattari, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran, P. O. Box: 14515/775.- Ahmad Majd, Islamic Azad University, North Tehran Branch, Faculty of Science, Department of Biology, Tehran, Iran.- Ali Asghar Maassomi, Research Institute of Forests and Rangelands, Department of Botany, Tehran Iran.- Ali Mazouji, Islamic Azad University, Roodehen Branch, Department of Biology, Roodehen, Iran.

Key words. embryogenesis, suspensor, suspensor haustorium, polyembryony, abnormal embryo, Astragalus, Fabaceae.
INTRODUCTION
From the Linnaes time until now, the genus *Astragalus* has been the subject of a good deal of nomenclatural changes. *Astragalus L.* (*Fabaceae, Papilionoideae*) is the largest genus of the flowering plants with about 2000-3000 species (Maassoumi, 1998; Podlech, 1982), and a major center of diversity is Iran with about 800 species. Subgeneric classification of the genus has been a matter of controversy. Podlech (1982) reduced the eight subgenera proposed initially in the genus (Bunge, 1868) to two *Astragalus* and *Cercidiothrix*. Several molecular systematic studies, such as RFLP (Restriction Fragment Length Polymorphism) analysis (Sanderson & Doyle, 1993) and analysis of different chloroplast (e.g., rpoC1 and rpoC2 : Liston, 1992 or ndhF: Kazempour Osaloo et al., 2003) and nuclear genes (e.g., Nuclear Ribosomal DNA ITS: Wojciechowski et al., 1999; Kazempour Osaloo et al., 2003 and 2005), have explained the phylogenetic relationships within *Astragalus*, but only a few groups found support from previous systematic studies. There are also some efforts on reconstructing phylogeny of different groups of *Astragalus* based on morphological characters, indicating high level of homoplasy for these characters (Sanderson, 1987; Zarre, 2000).

Embryological studies in *Papilionoideae* (Rembert, 1969; Plaser, 1975; Laresten, 1983; Prakash, 1987; Cameron & Prakash, 1994; Ashrafunnisa & Pullalah, 2000; Soverna et al., 2003; Galati et al., 2006) and a few embryological studies in *Astragalus* (Akhalkatsi et al., 1988; Gvaladze & Akhalkatsi, 1996; Riahi et al., 2003; Riahi & Zarre, 2009) have provided useful characters in embryogenesis and classification. Therefore, in the present study we investigate detailed embryological processes in five *Astragalus* species distributed in Iran including *A. eriocarpus* distributed in Iran including *A. eriocarpus*, *A. glaucacanthus* (*sect. A. compactus*), *A. remotijugus*, *A. chrysostachys* and *A. compactus* is discussed below for all of five species, and the differences are emphasized.

RESULTS
The overall megagametophyte and embryo development in *A. eriocarpus*, *A. glaucacanthus*, *A. remotijugus*, *A. chrysostachys* and *A. compactus* is discussed below for all of five species, and the differences are emphasized.

Ovary and Megagametophyte
The ovules in the five species are arranged in two rows. The mature ovules are campylotropous, crassinucellar and bitegmic. The micropyle is formed by two integuments and is zig-zag in shape (Fig. 1 A, B and Fig. 2 A, B). The embryo sac consists of seven cells: the egg cell, two synergids, the central cell and three antipodal cells (Fig. 1 C, E). Such an embryo sac represents the *Polygonum* type. The degeneration of antipodal cells is the first detectable change in the embryo sac before fertilization (Fig. 1 D). An endothelium is originated from the inner layer of the inner integument. The cells of this layer become radially stretched and contain prominent nuclei and dense cytoplasm. These cells are cubic in shape (Fig. 1 A, B, C, E, F, G, H).

Zygote Stage
The micropylar part of the zygote is filled by a large vacuole and the chalazal end with cytoplasm containing the egg nucleus. The zygote undergoes a period of rest, or perhaps reorganization. After a relatively long period of dormancy the zygote begins to elongate along the axis of the embryo sac (Fig. 1 F). Unlike zygote, the primary endosperm nucleus does not require any resting period and undergoes divisions within hours after fertilization. Repeated free nuclear divisions produce a large number of nuclei (Fig. 1 G). The embryo sac obtains its maximal growth rate at this stage and become open U-shaped. Also at this stage, in the basal part of the nucellus, between the embryo sac and vascular bundles, there is a group of cells with lignified and suberized walls, which is called hypostase (Fig. 1 F and Fig. 2 A, B). These cells usually have poor cytoplasmic contents and deformed nuclei, but occasionally they may have dense cytoplasm and thin walls like glandular cells (Fig. 2 F). The endothelium keeps pace with the expanding embryo sac by undergoing numerous anticlinal divisions (Fig. 2 B, D, F).
Fig. 1. Megagametophyte organization to proembryo stage. A. Longitudinal section of a fertilized ovule of A. remotijugus: Megagametophyte including antipodal cells, polar nuclei and zygote. B. Longitudinal section of a fertilized ovule in A. chrysostachys. C. Longitudinal section of organized megagametophyte in A. glaucacanthus: Antipodal cells are arranged side by side. D. Fertilized ovule in A. compactus. E. Young ovule just at fertilization in A. remotijugus: Fusion of one sperm (arrow) with polar nuclei at middle of megagametophyte. Small arrows show the pollen tube grows toward embryo sac and enters in the micropyle. F. Longitudinal section of ovule in A. eriocarpus: Zygote begins to elongate. G. A. compactus: First division in zygote that resulting in a terminal and basal cell and nuclear divisions in endosperm. H. Proembryo stage (four cellular embryo) in A. glaucacanthus: First divisions of primary endosperm nucleus, arrow show micropyl. Abbreviations: An-antipodal cells; DPS- degenerative persistent synergid; EN- endothelium; H- hypostase; HC- hypophyse; I- inner integument; M- micropyle; N- nucellus; OI- outer integument; PN- polar nuclei; PVB- provascular bundle; S- suspensor; S- synergid; VB- vascular bundle; Z- zygote.
Fig. 2. Development of proembryo to globular stage. A. *A. glaucacanthus*, endosperm develops as peripheral layer around the embryo sac and hypostase tissue is between the embryo sac and vascular bundles. B. Longitudinal section of ovule at proembryo stage in *A. remotijugus*, endosperm is peripheral layer around the embryo sac. C. *A. glaucacanthus*, eight-celled proembryo. D. *A. glaucacanthus*, 16-celled proembryo. E. *A. glaucacanthus*, early globular stage with coenocytic endosperm. F. Hypostase cells in *A. remotijugus*, the basal region of embryo sac that show hypostase, part of nucellus and peripheral endosperm. G. Polyembryony in *A. remotijugus*, lately globular stage with cellular endosperm, arrow show second embryo. H. Abnormal embryo in *A. glaucacanthus* with abnormal suspensor at late globular stage. Abbreviations: AEM- abnormal embryo; E- endosperm; EM- embryo; EN- endothelium; H- hypostase; HC- hypophyse; I- inner integument; M- micropyle; N- nucellus; OI- outer integument; PEM- proembryo; S- suspensor; SH- haustorial suspensor; VB- vascular bundle.
Proembryo Stage
The embryo development follows the Onagra type. There are no fundamental differences in the early stages of development in Astragalus embryos among studied species. The zygote divides transversely resulting in a terminal and a basal cell (Fig. 1 G). The basal cell divides by a transverse wall and the apical cell longitudinally. The proembryo thus assumes to take the shape of an inverted T. The two terminal cells formed by the longitudinal division of the apical cell divide by a longitudinal wall at right angles to the first and form a quadrant. Each cell of the quadrant divides by a transverse wall, giving rise to the octant stage (Fig. 1 H). The endosperm develops as a coenocytic tissue around the embryo and suspensor (Fig. 2 C, D), and as peripheral layer around the embryo sac (Fig. 2 A, B).

Globular Stage
The cells of octant enlarge considerably and undergo priclinal divisions (Fig. 2 D) differentiating an outer dermatogens layer and an inner layer of cells. The globular embryo is isometric (Fig. 2 E). Concomitant with the divisions the proembryo transverse divisions in basal cell, giving rise to an elongated suspensor. The proximal cell of the suspensor is conspicuously enlarged and is considered as haustorium (Maheshwari, 1950; Riahi et al., 2003; Riahi & Zarre, 2009). The cellularization of the endosperm occurs at the late globular stage (Fig. 3 B, C, D). This process starts at the micropylar end but the nuclei at the chalazal end remain free and embedded in a common cytoplasm. This chalazal coenocytic part of the embryo sac grows into a tubular haustorium (Fig. 3 G).

Heart Stage
Continued cell divisions increase the size of embryo. After formation of cotyledon primordial the embryo takes its heart-shaped form (Fig. 3 A, E, F). The main part of endosperm is cellularized at early heart-stage and endosperm haustoria is formed. The outer integument layer form the malpighian cells (macroscleoids) characteristic for the testa of Fabaceae (Fig. 3 D, E, F).

Cotyledon Stage
The two cotyledons begin to grow in to the cellularized endosperm. The cotyledons and hypocotyls elongate chiefly by transverse divisions of their constituent cells. The shoot apex differentiates as a small region in the depression between the two cotyledons (Fig. 3 G, H).

DISCUSSION
There are several morphological and developmental characters of the ovule in Astragalus species which have proved of taxonomic significance. Among the Astragalus species studied, two characters consist of: differences in suspensor and the timing of polar nuclei fusion have been marked (Lersten, 1983; Prakash, 1987; Akhalkatsi et al., 1988; Gvalade & Akhalkatsi, 1996; Riahi et al., 2003; Riahi & Zarre, 2009). The present work represents a detailed embryological study of five species belonging to five different sections in the classical systematic of the Astragalus genus (Bunge, 1868; Podlech, 1982). Also this paper focuses on important characters of the comparative embryology of five Astragalus species and examines the impacts of recent advances in phylogenetic.

Development of the suspensor
The size and appearance of the suspensor differ greatly among the Fabaceae (Lersten, 1983). Also one of the main differences in embryo development of Astragalus species is reported to be regarding the suspensor characters (Maheshwari, 1950; Riahi et al., 2003; Riahi & Zarre, 2009). In the investigated species the suspensor in A. eriocarpus (sect. Malacothrix) and A. glaucacanthus (sect. Poterion) is composed of four columns of the cells as well as 8-10 haustorial cells. This type of suspensor is smaller than the embryo proper in the globular stage (Fig. 3 A, B). The same suspensor structure has been observed in A. cemerinus (sect. Microphyta) and A. ruscifolius (sect. Dissitiflori) (Riahi & Zarre, 2009). Based on molecular data, since these four unrelated species belonging to different clades of Astragalus (Kazempour Osaloo et al., 2003, 2005) show this type of suspensor obviously represents the most common one, and probably a plesiomorphic character for the genus. Another type of suspensor in A. remotijugus (sect. Caprini) is composed of six columns of cells with 10 to 15 large haustorial cells. This type of suspensor is as large as or larger than the embryo proper (about 2.5 times) at the globular stage (Fig. 3 C). Based on present study, comparing with molecular data (Kazempour Osaloo et al., 2003) it seems that in primitive groups of species such as members of sect. Caprini species, suspensor would be larger with more columnar cells and large haustorial cells. Another characteristic is observed in this species, is formation of few embryos which originated from cells of embryo sac other than the egg cell. According to the former studies, commonly the additional embryos develop from synergids (Akhalkatsi et al., 1988; Singh et al., 2001). Here in A. remotijugus seem additional embryo is develop from the haustorial suspensor cells of the
Fig. 3. Comparative size and shape of the suspensor between five studied species. A. *A. eriocarpus* at early heart stage. B. *A. glaucacanthus* at globular stage. C. *A. remotijugus* at globular stage. D. *A. chrysostachys* at globular stage. E. *A. compactus* at early heart stage. F. Heart stage at *A. remotijugus*, the outer integument shows the characteristic morphology of the mature testa and reaches its maximal width during this stage and endosperm is cellularized. G. Cotyledon stage in *A. eriocarpus*, cotyledons growing and endosperm begins to degenerate. H. Cotyledon stage in *A. eriocarpus*, mature embryo with dome shaped apical shoot meristem (arrow). Abbreviations. E- endosperm; EH- haustorial endosperm; EM- embryo; EN- endothelium; I- inner integument; M- micropyle; OI- outer integument; S- suspensor; SH- haustorial suspensor; T- testa.
proembryo (Fig. 2 G). The smallest suspensor was observed in *A. chrysostachys* (sect. *Hymenostegis*) and has three columns of cells which lie in one or two rows with 4 to 6 haustorial cells (Fig. 3 D). According to the molecular systematic studies *A. glaucacanthus* and *A. chrysostachys* belong to same clade of *Astragalus* (Kazempour Osaloo et al., 2003). A three columns of cells with 3 haustoria cells form the suspensor of *A. compactus* (sect. *Racophorus*) (Fig. 3 E). The same suspensor structure has been observed also in *A. demavendicus* and *A. latifolius* (sect. *Incani*) (Riahi et al., 2003), two columns of cells with 2-3 haustorial cells. These species belong to different clades of *Astragalus* (Kazempour Osaloo et al., 2003).

Timing of fusion of polar nuclei
According to the last studies, the polar nuclei in *A. latifolius* fuse immediately after fertilization, but in *A. demavendicus* they remain separated until fertilization (Riahi et al., 2003). Then, in *A. cemeninus* and *A. ruscifolius* reported, fusion of polar nuclei occurs in the median regions of the central cell and before fertilization (Riahi & Zarre, 2009). In current study, all of species represented polar nuclei fusion before fertilization in the median central cell (Fig. 1 B, C, D), but in *A. remotijugus* they remain separated until fertilization (Fig. 1 E).

Digestion of nucellus
The nucellus begins to degenerate after fertilization in *A. glaucacanthus*, *A. eriocarpus*, *A. chrysostachys* and *A. compactus*. In a way in this species when the embryo sac is formed the nucellus is completely degenerated (Fig. 1 A, B, F and Fig. 2 A). But in *A. remotijugus* parts of the nucellus is remained until proembryo stage (Fig. 2 B). The same of this result is obtained in some other *Fabaceae* such as *Vicia faba* L. (Johansson & Walles, 1993). Riahi et al. (2003) observed that the nucellus degenerated when the embryo sac is formed and the degeneration of nucellus is completed until the formation of the proembryo.

Endosperm development
The development of endosperm in all of five species is similar with other species in *Astragalus* (Akhalkatsi et al., 1988; Gvalade & Akhalkatsi, 1996; Riahi et al., 2003; Riahi & Zarre, 2009). The first divisions of the primary endosperm nucleus are not accompanied by cell wall formation and nuclei remain free in the cytoplasm of the embryo sac. In proembryo stage endosperm is nuclear (Fig. 1 G, H and Fig. 2 A, B, C, D, E). The wall formation in nuclear endosperm begins at the lately globular stage (Fig. 3 A, B, C, D, E, F). In *Fabaceae* endosperm haustorium developed at the chalazal end (Johri & Gorg, 1959). The nuclei at this part are free and embedded in a common cytoplasm. The endosperm haustorium is observed in all five investigated species (Fig. 3 G).

Seed abortion
The number of ovules in an ovary and seeds in a pod are 11 and 2 to 4 in *A. eriocarpus*, 10 and 2 to 4 in *A. glaucacanthus*, 24 to 27 and 8 to 12 in *A. remotijugus*, 8 and 1 in *A. chrysostachys* and 4 to 6 and 1 in *A. compactus*, respectively. According to the results in *Pongamia pinnata* (*Fabaceae*), reduced seed set could be a result of competition for maternal resources between the seeds in a pod (Arathi et al., 1999). The last studies about *Astragalus* abnormal embryos were reported in *A. cemeninus* and *A. ruscifolius* (Riahi & Zarre, 2009). Abnormality is accompanied by development of an abnormally curved or obliquely positioned suspensor. In this manner globular embryo cannot advance to the heart shape as it enlarges. A similar kind of abnormality is observed in the five investigated species (Fig. 2 H). However, the mean percentage of seeds with abnormal embryos is about 65% in *A. eriocarpus*, 60% in *A. glaucacanthus*, 55 to 66% in *A. remotijugus*, 87.5% in *A. chrysostachys* and 75 to 83% in *A. compactus*. Therefore the highest rate of seed abortion is in *A. chrysostachys* and the lowest rate of seed abortion is in *A. remotijugus* and *A. glaucacanthus*.

REFERENCES


Kazempour-Osaloo, S., Maassoumi, A. A. & Murakami, N. 2005: Molecular systematics of the old world Astragalus (Fabaceae) as inferred from nr DNA ITS sequence data. -Brittonia 57(4): 367-381.


