Antioxidant Activity and Chemical Composition of the Essential oil of *Ducrosia anethifolia* (DC.) Boiss. from Neyriz

Javad Mottaghipisheh1, Malek Taher Maghsoudlou1, Jafar Valizadeh2, Rouhallah Arjomandi1

1Department of Chemistry, Faculty of Science, University of Sistan & Baluchestan, Zahedan, Iran
2Medicinal and Ornamental Plants Research Institute, University of Sistan & Baluchestan, Zahedan, Iran

Article History: Received: 28 January 2014/Accepted in revised form: 04 May 2014
© 2013 Iranian Society of Medicinal Plants. All rights reserve

Abstract

Ducrosia anethifolia (DC.) Boiss. is belongs to the Apiaceae family. It is one of the three species of Iranian *Ducrosia* Boiss. species growing wild in several areas of the country. In this research, we extracted the essential oil and it analyzed by GC/MS. The analysis of essential oil from leaves of *D. anethifolia* about 19 constituents was identified and percentage composition was determined (94.9%). The major constituents identified by this method were α-pinene (70.3%), β-myrcene (6.9%), β-pinene (6.3%), limonene (4.9%). So, extracts of this species extracted by maceration metho and antioxidant activity evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH•). Results showed that antioxidant activity of *D. anethifolia* in ethanolic and ethyl acetate extracts are less than Butylated hydroxytoluene (BHT) as a synthetic antioxidant which used for positive control. Although, antioxidant activity of ethanolic extract is more than ethyl acetate extract, but inhibitory power of this extracts is low.

Key words: *Ducrosia anethifolia* (DC.) Boiss., Essential oil, Antioxidant activity, DPPH, GC/MS, α-pinene

Introduction

Ducrosia anethifolia is one of the medicinal plants that belongs to the Apiaceae family. It is one of the three species of Iranian *Ducrosia* species growing wild in several areas of the country [1,2]. This aromatic herb is distributed in Afghanistan, Pakistan, Syria, Lebanon, Iraq, and some other Arab states and countries along the Persian Gulf [2]. *D. anethifolia* is commonly known in Iran as Moshgak, Roshgak, and Moshkbu [1,2]. The whole herb – especially its aerial parts – has been used in Iranian folklore medicine as an analgesic and pain reliever for headache, backache, colic, and colds. In some regions of Iran, it is claimed to be especially effective against anxiety and insomnia. This herb is added to a variety of Persian foods for flavoring [1,3]. In pharmacological and biological tests, extracts and fractions of *D. anethifolia* and some other species of *Ducrosia* are reported to have antimicrobial, antimycobacterial, antifungal effects [4,5] Phytochemical studies on *D. anethifolia* reveal that aliphatic aldehydes and other monoterpe hydrocarbons in its essential oil, and coumarins such as pangelin are the main components of the aerial parts [3, 6]. A few reports on the analysis of the essential oil of other *Ducrosia* species have been published, and these species contain some similar biologically active compounds [4,7,8]. Essential oils of several *Ducrosia* species have been cited in the literature, *D. anethifolia* and *D. flabellifolia* Boiss. essential oils were recently published by a research group [9]. The major components of *D. anethifolia* and *D. flabellifolia* oils were dodecanal and decanal. Janssen et al. (1984) reported α-pinene (59.2%), myrcene (11.6%) and limonene (7.5%) as the major compounds of the essential oil of *D. anethifolia* [10]. In another report, the major compounds of the oil of *D. anethifolia* were reported to be α-pinene, terpineolene and ocimene [11]. Haghi et al. (2004) reported the presence of α-pinene,
citronellal, limonene, linalool and myrcene in this oil [3] while in the other report, n-decanal constitutes more than 70% of the essential oil which has exhibited antianxiety effect in mice [12]. There are lesser studies for D. assadii Alava in the literature. A report shows n-decanal (36.4%) as the main component among the 29 constituents characterized in the oil of D. assadii [8], meanwhile Mostafavi et al. (2008) reported that the essential oil of the aerial parts of the plant is composed of n-decanal (74%), dodecanal (7.2%) and α-pinene (4.0%) [13].

In the present study, we describe the essential oil constituents identified by GC/MS analysis. In addition, we extracted the ethanolic and ethyl acetate extracts and antioxidant activity evaluated by DPPH radical and extrapolated with BHT as synthetic antioxidant. Assadipour et al. (2013) in a research reported that both flowering and fruiting essential oils could inhibit DPPH radical in a concentration-dependent manner. The highest inhibition for fruiting is more than flowering [14].

Materials and Methods

Plant materials

The leaves of plant were collected during the flowering period from Neyriz in Fars province in May 2012. The plant's identity as D. anethifolia was confirmed by the herbarium department of Fars Research Center for Agriculture and Natural Resources, Shiraz, Iran.

Preparation of the essential oil

The leaves of D. anethifolia were dried in shade and ground in a grinder. The dried plant samples were subjected to hydrodistillation for 4 h. using a Clevenger-type apparatus. After distillation and cooling the system, few drops of distilled n-hexane (Merck) for better separation and a little salt (sodium sulfate) for dehydration, were added. The oil was stored in 4 to 5°C until analysis.

GC/MS analysis

The oil was analyzed by GC/MS using Agilent Technology (HP) with a HP-5S Agilent 19091S–433 capillary column (30m×250µm, film thickness 0.25µm). For GC/MS detection an EI ionization system with ionization energy of 70 eV was used. In GC, the ion source was Electron Impact (EI) and analyzer was Quadrupole. Injector and MS transfer line temperatures were set at 230 °C. Helium was the carrier gas, with a flow rate of 1 ml/min. The programme used was 50–210 °C at a rate of 6 °C/min and held isothermal for 4 min and finally raised to 280 °C at a rate of 6 °C/min. 0.1 µL of diluted sample was injected manually.

Preparation of the extracts

The air-dried leaves of D. anethifolia were pulverized into powdered form. The dried powder (10 g) was extracted by maceration method and with ethanol (EtOH) and ethyl-acetate (EtOAc) separately at room temperature and the solvents from the combined extracts were evaporated by rotary system.

Chemicals and spectrophotometric measurements

1,1-diphenyl-2-picrylhydrazyl (DPPH), BHT (butylated hydroxytoluene), distilled n-hexane were obtained from Merck company. All other chemicals and solvents were of highest commercial grade. Spectrophotometric measurements were performed by UV-VIS spectrophotometer (UNICO UV-2100).

Antioxidant activity by DPPH assay

The antioxidant activity of the leaf extracts (ethanol and ethyl acetate) of D. anethifolia was measured on the basis of the scavenging activities of the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical [15]. IC50 values (concentration of sample required to scavenge 50% of free radicals) were calculated from the regression equation, prepared from the concentration of the extracts, and percentage inhibition of free radical formation/percentage inhibition DPPH was assayed. Synthetic antioxidant reagents, butylated hydroxytoluene (BHT) was used as positive control.

Results and Discussion

Chemical composition of the leaf essential oil

The hydrodistillation of the leaves of D. anethifolia gave yellowish-green oil. GC–MS analyses of the oil led to the identification of nineteen different compounds, representing 94.9% of the total oil. The essential oil yield was 0.6% (v/w) and its composition is shown in Table 1. According to their elution order on a HP-5S capillary column. The oil contained a complex mixture mainly of monoterpenes hydrocarbons and oxygen containing monoterpenes and diterpene and nitrogen containing compounds along with some other
essential phytochemicals. As shown in Table 1, the major compounds were detected in the oil. The major constituents identified by this method were α-pinene (70.3%), β-myrcene (6.9%), β-pinene (6.3%), limonene (4.9%) and decanal (2.4%) were also found to be the minor components of D. anethifolia leaf oil (Table 1).

Table 1 Chemical composition of the leaf essential oil of D. anethifolia

<table>
<thead>
<tr>
<th>No.</th>
<th>Compound</th>
<th>RT</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α-pinene</td>
<td>7.9</td>
<td>70.3</td>
</tr>
<tr>
<td>2</td>
<td>β-pinene</td>
<td>9.2</td>
<td>6.3</td>
</tr>
<tr>
<td>3</td>
<td>β-myrcene</td>
<td>9.7</td>
<td>6.9</td>
</tr>
<tr>
<td>4</td>
<td>Limonene</td>
<td>10.7</td>
<td>4.9</td>
</tr>
<tr>
<td>5</td>
<td>Δ-3-carene</td>
<td>11.6</td>
<td>0.4</td>
</tr>
<tr>
<td>6</td>
<td>1-methyl Tricyclo[2.2.1.0(2,6)]heptanes</td>
<td>12.7</td>
<td>0.9</td>
</tr>
<tr>
<td>7</td>
<td>(S)-3-hydroxyxypyrrolidine</td>
<td>13.3</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>Citronella</td>
<td>14.1</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>Decanal</td>
<td>15.4</td>
<td>2.4</td>
</tr>
<tr>
<td>10</td>
<td>2,3-epoxy-1-(methoxymethoxy)geraniol</td>
<td>16.0</td>
<td>0.1</td>
</tr>
<tr>
<td>11</td>
<td>Propane</td>
<td>17.8</td>
<td>0.04</td>
</tr>
<tr>
<td>12</td>
<td>Dodecanal</td>
<td>20.1</td>
<td>0.5</td>
</tr>
<tr>
<td>13</td>
<td>3-dodecanal</td>
<td>21.3</td>
<td>0.1</td>
</tr>
<tr>
<td>14</td>
<td>n-docosane</td>
<td>22.0</td>
<td>0.04</td>
</tr>
<tr>
<td>15</td>
<td>2-octyldodecan-1-ol</td>
<td>23.9</td>
<td>0.04</td>
</tr>
<tr>
<td>16</td>
<td>n-tetradecane</td>
<td>25.8</td>
<td>0.05</td>
</tr>
<tr>
<td>17</td>
<td>n-heptadecane</td>
<td>27.6</td>
<td>0.06</td>
</tr>
<tr>
<td>18</td>
<td>2,4-quinolinedicarboxylic acid</td>
<td>41.8</td>
<td>0.8</td>
</tr>
<tr>
<td>19</td>
<td>Luciduline</td>
<td>49.8</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>94.9</td>
</tr>
</tbody>
</table>

* Compounds listed in order of elution from a HP-5-MS column.
* Retention time (as minutes).

Antioxidant activity

Inhibitory power percent (IP%) of extracts of D. anethifolia are showed in Fig. 1. Constituents of extract not identified. The DPPH free radical scavenging activity of the leaf extracts (ethanol and ethyl acetate) has been shown in Fig. 2. The IC₅₀ values of the extracts were compared with the standard butylated hydroxytoluene (BHT = 45.64 ppm). A lower IC₅₀ value indicates a greater antioxidant activity. The free radical scavenging activities of ethanolic extract is IC₅₀ = 122.02 ppm and ethyl acetate extract is IC₅₀ = 354.37 ppm. However, ethanolic extract has a antioxidant activity rather than ethyl acetate extract. So, low polar extracts exhibited low DPPH scavenging activity.

Fig. 1 Comparison of scavenging effect of BHT and ethanolic and ethyl acetate extracts on DPPH radicals (IP%: Inhibitory power percent)

Fig. 2 DPPH IC₅₀ values for extracts of D. anethifolia and positive control (BHT).

Acknowledgement

This work is supported by the Department of Biology and Chemistry. Financial support from University of Sistan & Baluchestan Iran is gratefully acknowledged.

References

