HAMILTON-CONNECTED PROPERTIES IN CARTESIAN PRODUCT

R. HOSHUR AND E. VUMAR*

Communicated by Alireza Ashrafi

Abstract. In this paper, we investigate a problem of finding natural condition to assure the product of two graphs to be hamilton-connected. We present some sufficient and necessary conditions for \(G \square H \) being hamilton-connected when \(G \) is a hamilton-connected graph and \(H \) is a tree or \(G \) is a hamiltonian graph and \(H \) is \(K_2 \).

1. Introduction

In this paper, we consider finite simple graphs, and refer to [1] for terms and notations not defined here. Let \(G = (V, E) \) be a graph. For any vertex \(v \in V \), let \(d_G(v) \) denote the degree of \(v \) in \(G \), and \(\Delta(G) \) denote the maximum degree of \(G \). Let \(c(G) \) be the number of components in \(G \). Denote \(P_m, C_n \) and \(K_{1,j} \) to be a path with \(m \) vertices \((m \geq 2)\), a cycle with \(n \) vertices \((n \geq 3)\) and a star with \(j \) vertices \((j \geq 1)\), respectively.

Let \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \) be two graphs. The Cartesian product of \(G_1 \) and \(G_2 \), denoted by \(G_1 \square G_2 \), is the graph with vertex set \(V_1 \times V_2 \) such that the vertices \((x_1, y_1)\) and \((x_2, y_2)\) are adjacent if and only if either \(x_1 = x_2 \in V_1 \) with \(y_1 y_2 \in E_2 \), or \(y_1 = y_2 \in V_2 \) with \(x_1 x_2 \in E_1 \). It follows the definition that for any \((x, y) \in V(G)\),

\[
d_{G_1 \square G_2}(x, y) = d_{G_1}(x) + d_{G_1}(y).
\]

For any \(y \in V_2 \), define \(G_{1y} \) to be the graph with vertex set \(V_{1y} = \{(x, y) \mid x \in V_1\} \) and edge set \(E_{1y} = \{(x_1, y)(x_2, y) \mid x_1 x_2 \in E_1\} \). Similarly, For any \(x \in V_1 \), define \(G_{2x} \) to be the graph with vertex set \(V_{2x} = \{(x, y) \mid x \in V_2\} \) and edge set \(E_{2x} = \{(x, y_1)(x, y_2) \mid y_1 y_2 \in E_2\} \).

MSC(2010): Primary: 05C45; Secondary: 05C38.
Keywords: Cartesian product, Hamilton-connectedness, Hamilton cycle, Hamilton path.
Received: 1 June 2012, Accepted: 4 October 2012.
*Corresponding author.
Note that G_{1y} is isomorphic to graph G_1, for any $y \in V_2$; and that G_{2x} is isomorphic to graph G_2 for any $x \in V_1$. It is clear that

$$V_{1y} \cap V_{1y'} = \emptyset, \ E_{1y} \cap E_{1y'} = \emptyset \text{ for } y \neq y';$$

$$V_{2x} \cap V_{2x'} = \emptyset, \ E_{2x} \cap E_{2x'} = \emptyset \text{ for } x \neq x';$$

$$V_{1y} \cap V_{2x} = \{(x, y)\} \text{ for } x \in V_1; \ y \in V_2;$$

$$E(G_1 \square G_2) = (\cup_{y \in V_2} E_{1y}) \cup (\cup_{x \in V_1} E_{2x});$$

$$V(G_1 \square G_2) = (\cup_{y \in V_2} V_{1y}) = (\cup_{x \in V_1} V_{2x}).$$

A spanning path(cycle) is called a Hamilton path(cycle). A graph G is traceable if it contains a Hamilton path, and hamiltonian if it contains a Hamilton cycle. A graph G is hamilton - connected if there exists a Hamilton path joining any two different vertices of G.

Let F be a subgraph of a graph G. An ear of F in G is a nontrivial path in G whose ends lie in F but whose internal vertices do not.

A graph G is called a cactus if it has at least 3 vertices, all cycles of G are vertex-disjoint, maximum degree of G is 3 and all vertices of degree 3 are on a cycle of G.

We denote by \mathcal{E} the class of graphs with following properties:

(i) any graph $H \in \mathcal{E}$ can be edge-covered by two subgraphs H_C and H_F, such that $H = H_C \cup H_F$, H_C and H_F are edge-disjoint, H_C is an edge disjoint union of cycles C_1, \cdots, C_p, and H_F is a forest.

(ii) there is no vertex in H_C common to more than two cycles among the cycles C_1, \cdots, C_p.

(iii) $H \in \mathcal{E}$ has at least two vertices.

We call the pair (H_C, H_F) a cycle - tree covering of H.

A graph $H \in \mathcal{E}$ satisfying the following:

(i) for every vertex on exactly one cycle of H_C in the cycle-tree covering of H all its neighbors are either all pendent (vertices of degree one) or all nonpendant, i.e. for such vertex u we have either $d_G^p(u) \geq 0$ and $d_G^{np}(u) = 2$ or $d_G^p(u) = 0$ and $d_G^{np}(u) \geq 2$,

(ii) a vertex common to exactly two cycles in the cycle-tree covering of H has neighbors on these cycles only;

is called generalized cactus. In particular, such cactus is even if all its cycles are of even length.

The generalized b- cactus is a generalized cactus with every branch vertex (vertices of degree more than 3) on a cycle.

We denote by \mathcal{F} the class of graphs with following properties:

(i) any graph $G \in \mathcal{F}$ is union of cycles C_1, \cdots, C_p,
(ii) for two cycles for $C_i, C_{i+1}, |V(C_i \cap C_{i+1})| = l_i, 1 \leq i \leq p - 1, 1 \leq l_i \leq \max\left\{\frac{|V(C_i)|}{2}, \frac{|V(C_{i+1})|}{2}\right\}$

(iii) at least one of these cycles is odd cycle.

When $p = 2, l_i = l$, graph G is denoted by $\Theta(l, m, n)$, where $|V(C_1)| = n, |V(C_2)| = m$.

Here we mention some related results. Gould in [4] raised a research problem to find natural conditions to assure the product of two graphs to be hamiltonian. Paulraja in [11] gave the sufficient and necessary conditions for the prism over graphs to be hamiltonian. And Lu et.al in [9] present some sufficient and necessary conditions for $G \Box H$ being hamiltonian when G is a hamiltonian graph and H is tree.

The followings are some results related with our main Theorem.

Theorem 1.1. [1] Let S be a set of vertices of a hamiltonian graph G. Then $c(G - S) \leq |S|$.

Theorem 1.2. [11] Let G be a graph. The Cartesian product $G \Box K_2$ is hamiltonian if and only if G has an even generalized b-cactus as a subgraph.

Lemma 1.3. [9] Let C_n be a cycle ($n \geq 3$). For any tree T, if T contains a subdivision of $K^{(n)}_{1,3}$ as a subgraph. Then $G = C_n \Box T$ is not traceable, where $K^{(n)}_{1,3}$ is the graph obtained by identifying every degree 1 vertex of a $K_{1,3}$ with the center of a $K_{1,n}$.

Lemma 1.4. [7] Suppose that m is an odd integer. Then $C_m \Box K_2$ is hamilton-connected.

Note that when m is an even integer, $C_m \Box K_2$ is not hamilton-connected. In this paper, we shall investigate the sufficient and necessary conditions for $G \Box H$ being hamilton-connected when G is a hamilton-connected graph and H is a tree or G is hamiltonian graph and H is K_2. Our main theorems are as follows:

Theorem 1.5. Let G be a hamilton-connected graph, and let T be a tree with maximum degree \triangle. Then graph $G \Box T$ is hamilton-connected if and only if $\triangle(T) \leq |V(G)| - 1$ and T contains no subdivision of $K^{(n)}_{1,3}$ as a subgraph, where $K^{(n)}_{1,3}$ is the graph obtained by identifying every degree 1 vertex of a $K_{1,3}$ with the center of a $K_{1,n}$.

Theorem 1.6. Let G be a hamiltonian graph. The Cartesian product $G \Box K_2$ is hamilton-connected if and only if:

(i) G is of odd order, or

(ii) G is of even order and G contains $\Theta(1, 2k + 1, 2l + 1)$ as a spanning subgraph, where $\Theta(1, 2k + 1, 2l + 1)$ is the graph union of two odd cycles with a common edge.

2. Proof of Theorem 1.5

In this section we will give a proof of Theorem 1.5.

Lemma 2.1. Let $T = K_{1,m}$ be a star, and let G be a hamilton-connected graph with n vertices ($n \geq 3$). If $m \leq n - 1$, then the graph $H = G \Box T$ is hamilton-connected.
Proof. Let $V(K_{1,m}) = \{y_0, y_1, \ldots, y_m\}$, where $d(y_0) = m$ and $d(y_i) = 1$ for $1 \leq i \leq m$. Then $G_{1y_i} \cong G$ for $i = 0, 1, \ldots, m$. Particularly, $V(G_{1y_i}) = \{(v_1, y_i), (v_2, y_i), \ldots, (v_n, y_i)\}$ for $i = 0, 1,\ldots, m$. We shall determine a Hamilton path between any two given vertices in $G \Box T$. We distinguish the following cases.

Case 1. Any $(v_l, y_0), (v_f, y_0) \in G_{1y_0}$, $1 \leq l, f \leq n$.

Because graph G is hamilton-connected, there exists a Hamilton path joining any two distinct vertices of the graph G. Let P_0 be a Hamilton path of G_{1y_0} between (v_l, y_0) and (v_f, y_0). Let $x_1 = v_l$, $x_n = v_f$ and $P_0 = (x_1, y_0), (x_2, y_0), \ldots, (x_n, y_0))$. Let P_1 be a Hamilton path of G_{1y_i} between (x_i, y_i) and (x_{i+1}, y_i). Then

$$P = (P_0 - \{(x_1, y_0), (x_2, y_0), \ldots, (x_m, y_0)\}) \cup P_1 \cup P_2 \cup \cdots \cup P_m \cup \{(x_1, y_0), (x_2, y_0), \ldots, (x_m, y_0)\}$$

is a Hamilton path between (v_l, y_0) and (v_f, y_0) in H.

Case 2. Any $(v_l, y_i), (v_f, y_i) \in G_{1y_i}$, $1 \leq l, f \leq n$, $1 \leq i \leq m$.

Let P_1 be a Hamilton path between (v_{l+1}, y_i) and (v_{f+1}, y_i) in G_{1y_i}. From Case 1, we can find a Hamilton path P_2 between (v_l, y_0) and (v_{l+1}, y_0) in $G \Box (T - y_i)$. Then

$$P = P_1 \cup P_2 \cup \{(v_{l+1}, y_0)(v_l, y_0)\}$$

is a Hamilton path between (v_l, y_0) and (v_f, y_0) in H.

Case 3. Any $(v_l, y_i), (v_l, y_j) \in G_{1y_j}$, $1 \leq l, f \leq n$, $1 \leq i, j \leq m$, $i \neq j$.

Let P_1 be a Hamilton path between (v_l, y_i) and (v_r, y_i) in G_{1y_i} for $1 \leq p \leq m$. Let P_2 be a Hamilton path between (v_f, y_j) and (v_r, y_j) in G_{1y_j} for $1 \leq q \leq m$. From Case 1, we can find a Hamilton path P_3 between (v_r, y_0) and (v_r, y_0) in $G \Box (T - \{y_i, y_j\})$. Then

$$P = P_1 \cup P_2 \cup \{(v_r, y_0)(v_r, y_0), (v_q, y_0)(v_q, y_0)\}$$

is a Hamilton path between (v_l, y_i) and (v_f, y_j) in H.

Case 4. Any $(v_l, y_i), (v_f, y_i) \in G_{1y_i}$, $1 \leq l, f \leq n$, $1 \leq i \leq m$.

Let P_1 be a Hamilton path between (v_l, y_i) and (v_f, y_i) in G_{1y_i}. From Case 1, we can find a Hamilton path P_2 between (v_r, y_0) and (v_s, y_0) in $G \Box (T - y_i)$ for $\{(v_s, y_i)(v_r, y_i)\} \in P_1$ for $1 \leq r, s \leq n$. Then

$$P = (P_1 - \{(v_r, y_i)(v_s, y_i)\}) \cup \{(v_r, y_i)(v_r, y_0), (v_s, y_i)(v_s, y_0)\} \cup P_2$$

is a Hamilton path between (v_l, y_i) and (v_f, y_i) in H.

\square
Remark 2.2. By the argument used in Case 1 in the proof of Lemma 2.1, \(|E_{1y_0} \cap E(P)| = \emptyset \) if \(m = n - 1 \). If \(n - 1 > m \), then \((x_i, y_0)(x_{i+1}, y_0) \in E(P) \) for \(m \leq i \leq (n - 1) \), that is, \(|E_{1y_0} \cap E(P)| = n - m - 1 \). If \(n - 1 < m \), there exists no Hamilton path between \((v_1, y_0), (v_f, y_0) \in G_{1y_0}\).

Corollary 2.3. Let \(G \) be a hamilton-connected graph with \(n \) vertices \((n \geq 3)\). Then the graph \(H = G\Box K_{1,n} \) is not hamilton-connected.

Recall that \(K_{1,3}^{(n)} \) is the graph obtained by identifying every degree 1 vertex of a \(K_{1,3} \) with the center of a \(K_{1,n} \). Note that \(\Delta(K_{1,3}^{(n)}) = n + 1 \). Since a hamilton-connected graph is also hamiltonian, by Lemma 1.3 in \[9\], we have the following corollary.

Corollary 2.4. Let \(G \) be a hamilton-connected graph with \(n \) vertices \((n \geq 3)\). If \(T \) contains a subdivision of \(K_{1,3}^{(n)} \) as a subgraph, then the graph \(H = G\Box T \) is not hamilton-connected.

Proof of Theorem 1.5

Let \(H = G\Box T \) be a hamilton-connected graph and \(\Delta(T) \geq n + 1 \), where \(|V(G)| = n \). If there exists \(y \in V(T) \) such that \(d_T(y) \geq n + 1 \), then \(c(H - G_{1y}) = c(T - y) = d_T(y) \geq n + 1 \). By Theorem 1.1, \(H = G\Box T \) is not hamiltonian and hence is not hamilton-connected, a contradiction. If \(\Delta(T) = V(G) = n \), by Corollary 2.3, \(H \) is not hamilton-connected. Therefore \(\Delta(T) \leq n - 1 \). By Corollary 2.4, \(T \) contains no subdivision of \(K_{1,3}^{(n)} \) as a subgraph.

So it suffices to show that if \(\Delta(T) \leq n - 1 \) and \(T \) contains no subdivision of \(K_{1,3}^{(n)} \) as a subgraph, then \(H = G\Box T \) is a hamilton-connected graph. If \(T \) is a star, then it follows from Lemma 2.1. Therefore we may assume that \(T \) is not a star. By way of contradiction, let \(T \) be a tree with minimal number of vertices such that \(\Delta(T) \leq n - 1 \), \(T \) contains no subdivision of \(K_{1,3}^{(n)} \) as a subgraph and \(H = G\Box T \) is not hamilton-connected.

Note that \(T \) can be viewed as a graph obtained from finite stars \(T_1, T_2, \ldots, T_k \) by connecting their centers with edges and there exists such a star \(T_i \) that is connected to the other stars with only one edge. Without lose of generality, we may assume that \(T_1 \) is only connected to \(T_2 \). Let \(y_i \) the center of \(T_i \) \((i = 1, 2)\). Since \(T - T_1 \) is also a tree and \(|V(T - T_1)| \leq |V(T)| \), \(G\Box(T - T_1) \) is hamilton-connected. Since \(\Delta(T_1) \leq n - 1 \), by Lemma 2.1, \(G\Box T_1 \) is hamilton-connected.

Now we shall construct a Hamiltonian path between any two distinct vertices of \(H = G\Box T \), and then obtain a contradiction.

Case 1. Any \((v_l, y_i), (v_f, y_j) \in G\Box T_1, 1 \leq l, f \leq n\).

Let \(P_1 \) be a Hamilton path between \((v_l, y_i)\) and \((v_f, y_j) \) in \(G\Box T_1 \). Since \(d_{T_1}(y_1) \leq n - 2 \), at least one edge of \(G_{1y_1} \) lies in \(P_1 \). By Remark 2.2, we may assume \((v_1, y_1)(v_2, y_1) \in E_{1y_1} \cap E(P_1) \). Then there exists a Hamilton path \(P_2 \) between \((v_1, y_1), (v_2, y_2) \) in \(G\Box(T - T_1) \). Hence

\[
P = P_2 \cup (P_1 - \{(v_1, y_1)(v_2, y_1)\}) \cup \{(v_1, y_1)(v_2, y_2), (v_2, y_1)(v_2, y_2)\}
\]

is a Hamilton path between \((v_l, y_i)\) and \((v_f, y_j) \) in \(G\Box T \).
Case 2. Any \((v_l, y_l), (v_f, y_f) \in G \square (T - T_1), \ 1 \leq l, f \leq n.\)

The proof of this case is similar to the proof of Case 1. So it is omitted.

Case 3. Any \((v_l, y_l) \in G \square T_1, \ (v_f, y_f) \in G \square (T - T_1), \ 1 \leq l, f \leq n.\)

Let \(P_l\) be a Hamilton path between \((v_l, y_l)\) and \((v_l, y_1)\) in \(G \square T_1\). Let \(P_f\) be a Hamilton path between \((v_f, y_2)\) and \((v_f, y_j)\) in \(G \square (T - T_1)\). Then

\[
P = P_l \cup P_f \cup \{(v_l, y_l)(v_l, y_2)\}
\]

is a Hamilton path between \((v_l, y_l)\) and \((v_f, y_f)\) in \(G \square T\).

3. Proof of Theorem 3.1

In this section we will give the sufficient and necessary condition for \(G \square K_2\) being hamilton-connected. We know that prism over odd cycle is hamilton-connected\(^7\), but the prism over even cycle is not hamilton-connected. We now can consider the case when \(G\) contains \(\Theta(1, 2k + 1, 2l + 1)\) or \(\Theta(1, 2k + 1, 2l + 1)\) as a spanning subgraph. Note that \(G\) a is hamiltonian graph with even order.

Lemma 3.1. Let \(V(P_m) = \{x_1, x_2, \ldots, x_m\}\), and let \(X, Y\) be the bipartite partition of bipartite graph \(G = P_m \square K_2\). Then there exists Hamilton path joining any two vertices \((x_e, y_i) \in X\) and \((x_f, y_j) \in Y\) for \(1 \leq e, f \leq m, 1 \leq i, j \leq 2\), but no Hamilton path joining \((x_1, y_1) \in X\) and \((x_1, y_2) \in Y\) for \(1 < l < m\).

Proof. Let \(V(P_m) = \{x_1, x_2, \ldots, x_m\}\), \(V(K_2) = \{y_1, y_2\}\), and \(V(P_m \square K_2) = \{(x_1, y_1), (x_2, y_1), \ldots, (x_m, y_1), (x_1, y_2), (x_2, y_2), \ldots, (x_m, y_2)\}\). We can see that \(P_m \square K_2\) is a bipartite graph. Let \(X\) and \(Y\) be the bipartite partition of the \(G\). We will show that for any \((x_e, y_i) \in X\) and \((x_f, y_j) \in Y\) for \(1 \leq e, f \leq m, 1 \leq i, j \leq 2\) there exists a Hamilton path joining them, but no Hamilton path joining \((x_1, y_1) \in X\) and \((x_1, y_2) \in Y\) for \(1 < l < m\).

Obviously, there exists Hamilton path between \((x_1, y_1)\) and \((x_1, y_2)\) or \((x_m, y_1)\) and \((x_m, y_2)\) in \(G\). But no Hamilton path between \((x_l, y_1) \in X\) and \((x_l, y_2) \in Y\) for \(1 < l < m\).

Now consider any \((x_e, y_i) \in X\) and \((x_f, y_j) \in Y\), where \(e \neq f\).

By induction on \(m\) suppose that it is true for \(P_k \square K_2\) with \(k < m\). Let \(P_l = \langle x_1, x_2, \ldots, x_{f-1} \rangle\), \(P_f = \langle x_f, x_{f+1}, \ldots, x_m \rangle\). We may assume \(x_e \in V(P_l)\). By the induction hypothesis, there is a Hamilton path \(P'\) between \((x_e, y_1)\) and \((x_{f-1}, y_{j+1})\) in \(P_l \square K_2\) and there exists Hamilton a path \(P''\) between \((x_f, y_j)\) and \((x_f, y_{j+1})\), where \((x_f, y_j)(x_f, y_{j+1}) \in E(P_l \square K_2)\). Then

\[
P = P' \cup P'' \cup \{(x_f, y_{j+1})(x_{f-1}, y_{j+1})\}
\]

is a Hamilton path between \((x_e, y_1)\) and \((x_f, y_j)\) in \(G\).

Proposition 3.2. Let \(G = \Theta(1, 2k, 2l)\). Then \(H = G \square K_2\) is not hamilton-connected.
Proof. Let C_1 and C_2 be two even cycles, and let $V(C_1) = \{x_1, x_2, \ldots, x_{2k}\}$, $V(C_2) = \{x_1, x_2, x_3, \ldots, x_{2l}\}$, $E(C_1 \cap C_2) = \{x_1x_2\}$, $V(K_2) = \{y_1, y_2\}$.

We suppose that $G \Box K_2$ is hamilton-connected. There exists a Hamilton path P between (x_1, y_1) and (x_2, y_2). Let $C = G \setminus \{x_1x_2\}$, and note that C is an cycle with even order. Then $C \Box K_2$ is not hamilton-connected, and there exists no Hamilton path between (x_1, y_1) and (x_2, y_2) in $C \Box K_2$. So edges $(x_1, y_1)(x_2, y_1)$ or $(x_1, y_2)(x_2, y_2)$ must be contained in P, and one of them must be the first or last edge of P.

Now let $P_1 = (x_3, x_4, \ldots, x_{2k})$, and let $P_2 = (x_3', x_4', \ldots, x_{2l})$. Say edge $(x_1, y_1)(x_2, y_1)$ is first edge of P. From the argument earlier, there must exist Hamilton path between (x_3, y_1) and (x_{2k}, y_2) in $P_1 \Box K_2$. Because (x_3, y_1) and (x_{2k}, y_2) is in same partite in $P_1 \Box K_2$, by the Lemma 3.1, there exists no Hamilton path joining (x_3, y_1) and (x_{2k}, y_2), contradiction. \hfill\Box

Lemma 3.3. Let $G = \Theta(1, 2k + 1, 2l + 1)$. Then $H = G \Box K_2$ is hamilton-connected.

Proof. Let C_1 and C_2 be two odd cycles, and $V(C_1) = \{x_1, x_2, \ldots, x_{2k+1}\}$, $V(C_2) = \{x_1, x_2, x_3, \ldots, x_{2l+1}\}$, $E(C_1 \cap C_2) = \{x_1x_2\}$, $V(K_2) = \{y_1, y_2\}$.

Case 1. Any $(x_e, y_i), (x_f, y_j) \in V(C_1 \Box K_2)$, $1 \leq e, f, \leq 2k+1$, $1 \leq i, j \leq 2$.

Let $P_1 = (x_3, \ldots, x_e)$, $P_2 = (x_{e+1}, \ldots, x_f, \ldots, x_{2k+1})$.

Let X_1, Y_1 be bipartite partition of $P_1 \Box K_2$; X_2, Y_2 be bipartite partition of of $P_2 \Box K_2$. Without loss of generality, we may assume that $(x_3, y_1) \in X_1$, $(x_3, y_2) \in Y_1$, and $(x_{2k+1}, y_1) \in X_2$, $(x_{2k+1}, y_2) \in Y_2$. If $(x_e, y_i) \in X_1$ (if $(x_e, y_i) \in Y_1$ we can choose the (x_3, y_1)), by Lemma 3.1, we can find a Hamilton path P_3 between (x_e, y_i) and (x_3, y_2) in $P_1 \Box K_2$. Similarly if $(x_f, y_j) \in X_2$ (if $(x_f, y_j) \in Y_2$ we can choose the (x_{2k+1}, y_1)), we can find a Hamilton path P_4 between (x_f, y_j) and (x_{2k+1}, y_2) in $P_2 \Box K_2$.

By Lemma 1.4, there is a Hamilton path P_5 between (x_1, y_2) and (x_2, y_2) in $C_2 \Box K_2$. Then

$$P = P_1 \cup P_2 \cup \{(x_1, y_2)(x_{2k+1}, y_2), (x_2, y_2)(x_3, y_2)\}$$

is a Hamilton path between (x_e, y_i) and (x_f, y_j) in $G \Box K_2$.

Case 2. Any $(x_e', y_i'), (x_f', y_j') \in V(C_2 \Box K_2)$, $3 \leq e, f \leq 2l+1$, $1 \leq i, j \leq 2$.

The proof of this case is similar to that of Case 1. So it is omitted.

Case 3. Any $(x_e, y_i) \in V(C_1 \Box K_2)$, $(x_f', y_j) \in V(C_2 \Box K_2)$, $1 \leq e \leq 2k+1$, $3 \leq f \leq 2l+1$, $1 \leq i, j \leq 2$.

Let $P_{2l-2} = (x_3, x_4, \ldots, x_{2l+1})$ and let X, Y be bipartite partition of $P_{2l-2} \Box K_2$. Consider the vertices $(x_{2l+1}, y_1), (x_{2l+1}, y_2)$ or $(x_3, y_1), (x_3, y_2)$ that are in different partite sets. Say the former, we can assume $(x_{2l+1}, y_1) \in X, (x_{2l+1}, y_2) \in Y$.

Without loss of generality, we may assume $(x_f', y_j) \in X$, by Lemma 3.1, there is a Hamilton path P_1 between (x_f', y_j) and (x_{2l+1}, y_2) in $P_{2l-2} \Box K_2$. Also there is a Hamilton path P_2 between (x_1, y_2) and (x_e, y_i) in $C_1 \Box K_2$. Then

$$P = P_1 \cup P_2 \cup \{(x_{2l+1}, y_2)(x_1, y_2)\}$$
is a Hamilton path between \((x_e, y_i)\) and \((x_f, y_j)\) in \(G \Box K_2\).

\[\Box\]

Proposition 3.4. Suppose that \(H = C_n \Box K_2\) is a hamilton-connected graph. Then \(n\) is an odd integer.

Proof. Let \(V(C_n) = \{x_1, x_2, \ldots, x_n\}\), \(V(K_2) = \{y_1, y_2\}\). Let \(P_1\) be a Hamilton path between \((x_1, y_1)\) and \((x_2, y_2)\), then \(P_1 = \langle (x_1, y_1), (x_1, y_2), (x_n, y_1), (x_n, y_2), (x_{n-1}, y_1), \ldots, (x_3, y_1), (x_2, y_1), (x_2, y_2) \rangle\) and \(P_1\) contains every pillar of the prism. Let \(X = V(G_{1y_1})\), then \(|\partial(X)| = 2t + 1\), where \(\partial(X)\) is set of edges with one end in \(X\).

Since \(H = C_n \Box K_2\) is an odd graph, and by \(|\partial(X)| + 2e(X) = \sum_{v \in X} d(v)\), we have \(|\partial(X)| = |X| \mod 2\), so \(|X| = |V(G_{1y_1})| = n\) is an odd integer.

Conclude all the above, we can obtain the sufficient and necessary condition for prism over hamiltonian graph being hamilton-connected, that is Theorem 1.6. Therefore we can give a sufficient condition for \(G \Box P_m\) being hamilton-connected.

Theorem 3.5. Let \(m\) be an integer, where \(m \geq 2\). Then \(H = G \Box P_m\) is hamiltonian-connected, if:

(i) \(G\) is a hamiltonian graph with odd order, or

(ii) \(G\) is a hamiltonian graph with even order, and \(G\) contains \(\Theta(1, 2k + 1, 2l + 1)\) as a spanning subgraph, where \(\Theta(1, 2k + 1, 2l + 1)\) is the graph union of two odd cycles with a common edge.

Proof. Let \(C_n\) be a Hamilton cycle of \(G\), \(V(C_n) = \{x_1, x_2, \ldots, x_n\}\), \(V(P_m) = \{y_1, y_2, \ldots, y_m\}\).

We prove it by induction on \(m\).

When \(m = 2\), by Theorem 1.6 it is right. Now we suppose that \(G \Box P_{m-1}\) is hamilton-connected when \(G\) satisfies those conditions. We shall show that \(H = G \Box P_m\) is hamilton-connected.

Case 1. Any \((x_e, y_i), (x_f, y_j) \in V(C_n \Box P_{m-1})\), \(1 \leq e, f \leq n\), \(1 \leq i, j \leq m - 1\).

By induction hypothesis there is a Hamilton path \(P_1\) between \((x_e, y_i)\) and \((x_f, y_j)\) in \(G \Box P_{m-1}\). Without loss of generality, assume \((x_i, y_{m-1})(x_{i+1}, y_{m-1}) \in E(C_n \Box P_{m-1} \cap P_1)\). Then

\[
P = (P_1 \setminus \{(x_i, y_{m-1})(x_{i+1}, y_{m-1})\}) \cup \{(x_i, y_{m-1})(x, y_m), (x_{i+1}, y_{m-1})(x_{i+1}, y_m)\} \cup \{(x_i, y_m)(x_{i-1}, y_m), (x_{i-2}, y_m), \ldots, (x_{i+2}, y_m)(x_{i+1}, y_m)\}
\]

is a Hamilton path between \((x_e, y_i)\) and \((x_f, y_j)\) in \(H\).

Case 2. Any \((x_e, y_i) \in V(C_n \Box P_{m-1})\), \((x_f, y_m) \in V(G_{1y_m})\), \(1 \leq e, f \leq n\), \(1 \leq i \leq m - 1\).

By induction hypothesis there is a Hamilton path \(P_1\) between \((x_e, y_i)\) and \((x_{f+1}, y_{m-1})\) in \(G \Box P_{m-1}\). Then

\[
P = P_1 \cup \{(x_{f+1}, y_{m-1})(x_{f+1}, y_m)\} \cup \{(x_{f+1}, y_m)(x_{f+2}, y_m), (x_{f+2}, y_m)(x_{f+3}, y_m), \ldots, (x_{f-1}, y_m)(x_f, y_m)\}
\]

is a Hamilton path between \((x_e, y_i)\) and \((x_f, y_m)\) in \(H\).
Case 3. Any \((x_e, y_m), (x_f, y_m) \in V(G_{1y_m}), 1 \leq e, f \leq n.\)

Let \(P_1 = \langle (x_{e+1}, y_m), (x_{e+2}, y_m), \ldots, (x_f, y_m) \rangle, P_2 = \langle (x_{f+1}, y_m), (x_{f+2}, y_m), \ldots, (x_e, y_m) \rangle.\) By induction hypothesis there is a Hamilton path \(P_3\) between \((x_{e+1}, y_{m-1})\) and \((x_{f+1}, y_{m-1})\) in \(G \square P_{m-1}.\) Then

\[
P = P_3 \cup \{ (x_{e+1}, y_{m-1}) (x_{e+1}, y_m), (x_{f+1}, y_{m-1}) (x_{f+1}, y_m) \} \cup P_1 \cup P_2
\]
is a Hamilton path between \((x_e, y_m)\) and \((x_f, y_m)\) in \(H.\)

By the proof of the Lemma 3.3 we can obtain the following corollary.

Corollary 3.6. Let \(G\) be a graph such that \(G \square K_2\) is a hamilton-connected graph. If \(H = G \cup P\) with \(|E(G \cap P)| = 1\), where \(P\) is an ear of \(G\), then \(H \square K_2\) is hamilton-connected.

Acknowledgments

This work is supported by Nature Science Foundation of China under grant no.11061034 and by XJEDUI2011I01.

References

Rushengul Hoshur
College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P.R. China
Email: Rushengul@yahoo.com.cn

Elkin Vumar
College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P.R. China
Email: vumar@xju.edu.cn, elkin1226@sina.com