ON p-SOLUBLE GROUPS WITH A GENERALIZED p-CENTRAL OR POWERFUL SYLOW p-SUBGROUP

E. I. KHUKHRO

Communicated by Gustavo A. Fernández-Alcober

Abstract. Let \(G \) be a finite \(p \)-soluble group, and \(P \) a Sylow \(p \)-subgroup of \(G \). It is proved that if all elements of \(P \) of order \(p \) (or of order \(\leq 4 \) for \(p = 2 \)) are contained in the \(k \)-th term of the upper central series of \(P \), then the \(p \)-length of \(G \) is at most \(2m + 1 \), where \(m \) is the greatest integer such that \(p^m - p^{m-1} \leq k \), and the exponent of the image of \(P \) in \(G/O_{p'}(G) \) is at most \(p^m \). It is also proved that if \(P \) is a powerful \(p \)-group, then the \(p \)-length of \(G \) is equal to 1.

1. Introduction

A finite \(p \)-group \(P \) is called \(p \)-central if all its elements of order \(p \) are contained in the centre: \(\Omega_1(P) \leq Z(P) \). Sometimes this definition is modified in the case of \(p = 2 \) to require that all elements of order \(\leq 4 \) belong to \(Z(P) \). Such \(p \)-groups are in many respects dual to powerful \(p \)-groups (and the above-mentioned modification for \(p = 2 \) reflects the definition of powerful 2-groups). Although \(p \)-central \(p \)-groups received less attention in the literature than the very important case of powerful \(p \)-groups, there are several papers devoted to \(p \)-central \(p \)-groups and properties of their embeddings in finite groups; the reader can find relevant references in [4].

González-Sánchez and Weigel [4] initiated the study of more general classes: a finite \(p \)-group \(P \) is called \(p^i \)-central of height \(k \) if all its elements of order dividing \(p^i \) are contained in the \(k \)-th term of the upper central series: \(\Omega_i(P) \leq \zeta_k(P) \). In particular, they proved [4, Theorem E] that if, for an odd prime \(p \), a Sylow \(p \)-subgroup of a finite \(p \)-soluble group \(G \) is \(p \)-central of height \(p - 2 \), then \(G \) has \(p \)-length 1.

Keywords: \(p \)-central \(p \)-group of height \(k \), powerful \(p \)-group, \(p \)-soluble, \(p \)-length.
Received: 22 February 2012, Accepted: 22 March 2012.
In this note we generalize this result to arbitrary height (including the case \(p = 2 \) with the above-mentioned proviso). Namely, we obtain a bound for the \(p \)-length of a \(p \)-soluble group \(G \) whose Sylow \(p \)-subgroup is \(p \)-central of height \(k \) (Theorem 3.1). This result is derived from a bound for the exponent of a Sylow \(p \)-subgroup of \(G/O_{p',p}(G) \) (Theorem 3.2), which is proved on the basis of Hall–Higman theorems.

We also prove the result “dual” to [4, Theorem E], that if a finite \(p \)-soluble group \(G \) has a powerful Sylow \(p \)-subgroup, then the \(p \)-length of \(G \) is equal to 1 (Theorem 4.1).

2. Preliminaries

We shall need the following well-known property of coprime action by automorphisms. Recall that for a finite \(p \)-group \(P \) by definition \(\Omega_i(P) = \langle g \in P \mid g^{p^i} = 1 \rangle \).

Lemma 2.1 ([3, Kap. IV, Satz 5.12]). Suppose that a finite \(p' \)-group \(A \) acts by automorphisms on a finite \(p \)-group \(P \). If \(A \) acts trivially on \(\Omega_1(P) \) for \(p \neq 2 \), or on \(\Omega_2(P) \) for \(p = 2 \), then \(A \) acts trivially on \(P \).

Some other well-known properties of coprime actions of groups of automorphisms will be used without special references.

Recall that if a finite group \(G \) acts by automorphisms on an elementary abelian \(p \)-group \(V \), then \(V \) can be regarded as a vector space over the field of \(p \) elements \(\mathbb{F}_p \) and the action of \(G \) by conjugation on \(V \) can be regarded as action by linear transformations of this vector space. The linear transformation of \(V \) induced by an element \(g \in G \) is denoted by \(T(g) \). We use the right operator notation for this action: for \(v \in V \) and \(g \in G \) the image of \(v \) under \(T(g) \) is denoted by \(vT(g) \). For example, if \(V \) is a normal elementary abelian section of \(G \), then \(G \) acts on \(V \) by conjugation and \(vT(g) \) is equal to the image of the group element \(\hat{v}^g \), where \(\hat{v} \) is an inverse image of \(v \) in \(G \). Note that \(v(T(g) - 1_V) \), where \(1_V \) is the identity transformation of \(V \), is equal to the image of the group commutator \([\hat{v}, g]\) , which is also equal to \([v, g]\) in the natural semidirect product \(V \rtimes G \).

We also recall Theorem B from the celebrated Hall–Higman paper [5].

Theorem 2.2 ([5, Theorem B]). Let \(H \) be a \(p \)-soluble linear group over a field of characteristic \(p \), with no normal \(p \)-subgroup greater than 1. If \(h \) is an element of order \(p^m \) in \(H \), then the minimal equation of \(h \) is \((x - 1)^r = 0\), where \(r = p^m \), unless there is an integer \(m_0 \), not greater than \(m \), such that \(p^{m_0} - 1 \) is a power of a prime \(q \) for which a Sylow \(q \)-subgroup of \(H \) is non-abelian, in which case, if \(m_0 \) is the least such integer, \(p^m - p^{m-m_0} \leq r \leq p^m \).

We shall only need the fact that we always have \(p^m - p^{m-1} \leq r \leq p^m \).

When an element \(g \in GL(V) \) of order \(p^m \) acts as a linear transformation on a vector space \(V \) over a field of characteristic \(p \), its minimal polynomial always has the form \((x - 1)^r = 0\), because \(x^{p^m} - 1 = (x - 1)^{p^m} \) in characteristic \(p \). It follows that \(V \) has a basis in which the matrix of \(g \) has Jordan normal form, since the only eigenvalue is 1. The maximum size of Jordan blocks is \(p^m \times p^m \).
It is well known that the natural semidirect product \(V\langle g \rangle \) of groups \(V \) and \(\langle g \rangle \) contains an element of order \(p^{m+1} \) if and only if there is at least one Jordan block of size \(p^m \times p^m \).

3. Generalized \(p \)-central Sylow \(p \)-subgroup

Recall that \(O_{p'}(G) \) is the maximal normal \(p' \)-subgroup of a finite group \(G \); then \(O_{p',p}(G) \) is the full inverse image of the maximal normal \(p' \)-subgroup of \(G/O_{p'}(G) \), and so on, defining by induction the terms of the upper \(p \)-series \(O_{p',p',p',...}(G) \). A finite group \(G \) is \(p \)-soluble if \(G = O_{p',p',p',...}(G) \) and the minimum number of symbols \(p \) in this equation is called the \(p \)-length of \(G \).

Theorem 3.1. Let \(P \) be a Sylow \(p \)-subgroup of a finite \(p \)-soluble group \(G \). Suppose that \(\Omega_1(P) \leq \zeta_k(P) \) for \(p \neq 2 \), or \(\Omega_2(P) \leq \zeta_k(P) \) for \(p = 2 \). Then the \(p \)-length of \(G \) is at most \(2m + 1 \), where \(m \) is the maximum integer such that \(p^m - p^{m-1} \leq k \).

In particular, as a rough estimate, \(m < 1 + \log_p k \), so that the \(p \)-length is at most \(3 + 2 \log_p k \).

Theorem 3.1 will follow from a bound for the exponent of a Sylow \(p \)-subgroup of \(G/O_{p',p}(G) \).

Theorem 3.2. Let \(P \) be a Sylow \(p \)-subgroup of a finite \(p \)-soluble group \(G \). Suppose that \(\Omega_1(P) \leq \zeta_k(P) \) for \(p \neq 2 \), or \(\Omega_2(P) \leq \zeta_k(P) \) for \(p = 2 \). Then the exponent of a Sylow \(p \)-subgroup of \(G/O_{p',p}(G) \) is at most \(p^m \), where \(m \) is the maximum integer such that \(p^m - p^{m-1} \leq k \).

Proof. We can obviously assume that \(O_{p'}(G) = 1 \).

Let \(Q \) be a Hall \(p' \)-subgroup of \(O_{p,p'}(G) \), so that \(O_{p,p'}(G) = O_p(G)Q \). By the generalized Frattini argument,

\[G = O_{p,p'}(G)N_G(Q) = O_p(G)N_G(Q), \]

so we need to obtain a bound for the exponent of the image of a Sylow \(p \)-subgroup of \(N_G(Q) \) in \(G = G/O_p(G) \). We use bars to denote images of elements or subsets in \(G \).

Let \(g \) be an element of a Sylow \(p \)-subgroup of \(N_G(Q) \), so that \(\bar{g} \) is its image in \(\bar{G} = G/O_p(G) \). Let \(|\bar{g}| = p^n \). We must show that \(p^n - p^{n-1} \leq k \). We can of course assume that \(n \geq 1 \).

Since \(O_p(\bar{G}) = 1 \) and \(Q = O_{p'}(\bar{G}) \), we have \(C_{\bar{G}}(\bar{Q}) \leq \bar{Q} \) (see, for example, [2, Theorem 6.3.2]). Hence the \(p \)-element \(\bar{g} \) acts faithfully on \(\bar{Q} \); in other words, \([\bar{Q}, \bar{g}^{p^{n-1}}] \neq 1 \). Clearly, \(\bar{g} \) also acts on \(Q \) itself, and \([Q, \bar{g}^{p^{n-1}}] = [\bar{Q}, \bar{g}^{p^{n-1}}] \neq 1 \).

Let \(\Omega \) denote \(\Omega_1(O_p(G)) \) if \(p \neq 2 \), and \(\Omega_2(O_p(G)) \) if \(p = 2 \).

Consider a series of normal subgroups of \(G \)

\[1 = U_0 < U_1 < \cdots < U_n = \Omega \]

in which each factor \(U_{i+1}/U_i \) is an elementary abelian \(p \)-group contained in the centre of \(O_p(G)/U_i \). Then the action of the semidirect product \(Q\langle g \rangle \) on each factor \(U_{i+1}/U_i \) is well defined.

Since \(O_{p'}(G) = 1 \), the \(p' \)-subgroup \([Q, \bar{g}^{p^{n-1}}] \neq 1 \) acts faithfully on \(O_p(G) \). By Lemma 2.1, moreover, \([Q, \bar{g}^{p^{n-1}}] \) acts faithfully on \(\Omega \). Since the action is coprime, we obtain that \([Q, \bar{g}^{p^{n-1}}] \) acts nontrivially on at least one of the factors \(V \) of the series \(\{1\} \). Let \(H \) denote the image of \(Q\langle g \rangle \) in the group of
linear transformations of the vector space V over \mathbb{F}_p, which consists of elements $T(u)$ for $u \in Q(\bar{g})$ in accordance with our notation.

Since the subgroup $[Q, g^{p^{n-1}}]$ acts non-trivially on V, we must have $O_p(H) = 1$. Indeed, otherwise $T(\bar{g})^{p^n-1}$ would be in $O_p(H)$ and then the image of $[Q, g^{p^{n-1}}]$ would be in $O_2(H) \cap O_p(H) = 1$ and therefore trivial, contrary to the assumption. For the same reasons, $T(\bar{g})$ has the same order p^n.

By the Hall–Higman Theorem 2.2, the minimal polynomial of $T(\bar{g})$ is $(x-1)^r = 0$, where $p^n - p^{n-1} \leq r \leq p^n$. Therefore there is $v \in V$ such that

$$v(T(\bar{g}) - 1_v)^{p^n - p^{n-1} - 1} \neq 0.$$

Since the image of an element $u \in V$ under the linear transformation $T(\bar{g}) - 1_V$ is equal to the group commutator $[u, \bar{g}]$, it follows from (3.2) that

$$[[...[[[v, \bar{g}], \bar{g}], ..., \bar{g}] \neq 1.$$

But by the hypothesis of the theorem we have $\Omega \leq \Omega_1(P) \leq \zeta_k(P)$ for $p \neq 2$ (or $\Omega \leq \Omega_2(P) \leq \zeta_k(P)$ for $p = 2$). Therefore we must also have

$$[[...[[[v, \bar{g}], \bar{g}], ..., \bar{g}] = 1.$$

It follows that $p^n - p^{n-1} - 1 < k$, as required.

Proof of Theorem 3.2. Once we know a bound for the exponent e_p of a Sylow p-subgroup of $G/O_{p',p}(G)$, we obtain a bound for the p-length l of $G/O_{p',p}(G)$. Indeed, for $p \neq 2$ we have $e \geq [(l+1)/2]$ by the Hall–Higman theorem [5, Theorem A], and for $p = 2$ we have $e \geq l$ by Bryukhanova’s theorem [1] (which is the best-possible improvement of the earlier estimate $2e - 2 \geq l$ by Gross [3]). Since $l + 1$ is exactly the p-length of G, the result follows from Theorem 3.2.

Remark 3.3. The Hall–Higman Theorem A gives a better bound $e \geq l$ if p is not a Fermat prime. As noticed in the Hall–Higman paper [5], it follows from the proof that in the Hall–Higman Theorem 2.2 we have $r = p^m$ if p is odd and not a Fermat prime. Thus, the estimates can be further improved in these cases.

Remark 3.4. Theorems 3.1 and 3.2 lend further support to the viewpoint that the “correct” definition of 2-central 2-groups (also those of height k) must involve Ω_2 rather than Ω_1. May be, this definition can also be used to extend to $p = 2$ some other results involving p-central p-groups of height k, which do not hold for $p = 2$ without this amendment.

4. Powerful Sylow p-subgroup

Recall that a finite p-group P is **powerful** if $P^p \geq [P, P]$ for $p \neq 2$, or $P^4 \geq [P, P]$ for $p = 2$. Properties of powerful p-groups that we need here are well known since the original paper by Lubotzky and Mann [7]. In particular, if P is a powerful p-group, then the subgroups $P^{p^i} = \langle g^{p^i} | g \in P \rangle$ form a central series of P, and $P^{p^i} = \langle g^{p^i} | g \in P \rangle$ for all i.

www.SID.ir
Theorem 4.1. If a finite p-soluble group G has a powerful Sylow p-subgroup, then the p-length of G is equal to 1.

Proof. We argue by contradiction. Let G be a finite p-soluble group of minimal order with a powerful Sylow p-subgroup such that the p-length of G is greater than 1. By minimality we must have $O_{p'}(G) = 1$. Since homomorphic images of powerful p-groups are powerful, it follows by minimality that $V := O_p(G)$ is an elementary abelian p-group. Then G/V acts faithfully on V, which we can also regard as an $\mathbb{F}_p(G/V)$-module.

Let Q be a Hall p'-subgroup of $O_{p,p'}(G)$. Then Q acts faithfully on $V/C_V(Q)$, since the action is coprime. Clearly, $C_V(Q) = Z(O_{p,p'}(G))$, and therefore $C_V(Q)$ is normal in G. By minimality we must have $C_V(Q) = 1$.

By the generalized Frattini argument, $V N_G(Q) = G$. Let S be a Sylow p-subgroup of $N_G(Q)$. Then $P := VS$ is a Sylow p-subgroup of G. Note that $V \cap S = 1$, since $C_V(Q) = 1$.

Choose an element $g \in P$ of maximal possible order p^n, so that p^n is the exponent of P. From this moment on we consider separately the cases $p \neq 2$ and $p = 2$.

Case $p \neq 2$. Then $n \geq 2$. Indeed, a powerful p-group of exponent p is abelian, and if we had $n = 1$, then P would be abelian and the p-length of G would be equal to 1, contrary to our assumption.

Hence the element $h = g^{p^{n-2}}$ is well defined. By the properties of powerful p-groups, $P^{p^{n-1}} \leq Z(P)$ and $P^{p^{n-2}} \leq \zeta_2(P)$. Therefore, $1 \neq h^p \in Z(P) \leq V$ and $h \in \zeta_2(P)$. Since V is elementary abelian, we also have $h \not\in V$.

Since $P = VS$, we can represent h as $h = vs$ for $v \in V$ and $s \in S$. Then $|s| = p$, because $s^p \in V \cap S = 1$. At the same time, $|vs| = |h| = p^2$. Hence the Jordan normal form of the linear transformation $T(s)$ of V induced by the action of s by conjugation must have a block of size $p \times p$. Therefore there is a vector $x \in V$ such that

$$x(T(s) - 1_V)^{p-1} \neq 0.$$

In terms of group commutators, this means that

$$\underbrace{[[[x, s], s], \ldots, s]}_{p-1} \neq 1.$$

But the action of s on V coincides with the action of $h = vs$. Therefore,

$$\underbrace{[[[x, h], h], \ldots, h]}_{p-1} \neq 1.$$

This contradicts the inclusion $h \in \zeta_2(P)$, since $p \geq 3$.

Case $p = 2$. Then $n \geq 3$. Indeed, a powerful 2-group of exponent 4 is abelian, and if we had $n \leq 2$, then P would be abelian and the p-length of G would be equal to 1, contrary to our assumption.

Hence the element $h = g^{2^{n-3}}$ is well defined. By the properties of powerful 2-groups, $P^{2^{n-1}} \leq Z(P)$, $P^{2^{n-2}} \leq \zeta_2(P)$, and $P^{2^{n-3}} \leq \zeta_3(P)$. Therefore, $1 \neq h^4 \in Z(P) \leq V$ and $h \in \zeta_3(P)$. Since V is elementary abelian, we also have $h^2 \not\in V$.
We again represent h as $h = vs$ for $v \in V$ and $s \in S$. Then $|s| = 4$, since $s^4 \in V \cap S = 1$. At the same time, $|vs| = |h| = 8$. Hence the Jordan normal form of the linear transformation $T(s)$ of V induced by the action of s by conjugation must have a block of size 4×4. Therefore there is a vector $x \in V$ such that

$$x(T(s) - 1_V)^3 \neq 0.$$

In terms of group commutators, this means that

$$[[[x, s], s], s] \neq 1.$$

Since the action of s on V coincides with the action of $h = vs$, we also have

$$[[[x, h], h], h] \neq 1.$$

This contradicts the inclusion $h \in \zeta_3(P)$. \hfill \square

Remark 4.2. It is not immediately clear how to generalize the definition of powerful p-groups “dually” to the definition of p-central p-groups of height k. Probably, such a definition would also allow to prove a bound for the p-length of p-soluble group G with a Sylow p-subgroup satisfying this definition. A rough bound for the p-length would follow by Hall–Higman theorems if such generalized “k-powerful” p-groups had the following property: if the exponent is p^m, then the nilpotency class is bounded by a function of n and k that is subexponential (even linear) in n. This would of course generalize the property of powerful p-groups, where the nilpotency class is at most n. Indeed, let p^m be the exponent of the image of a Sylow p-subgroup P of G in $G/O_{p',p}(G)$. Let V be the Frattini quotient of $O_{p',p}(G)/O_{p'}(G)$ regarded as an $F_p(G/O_{p',p}(G))$-module. As we saw in the proof of Theorem 3.2, then by Hall–Higman theorems there are elements $v \in V$ and $g \in P$ such that

$$[[[v, g], g], \ldots, g] \neq 1.$$

On the other hand, we would have

$$[[[v, g], g], \ldots, g] = 1$$

with the hypothetical function $f(k, n)$ bounding the nilpotency class. Hence,

$$p^m - p^{m-1} - 1 \leq f(k, m).$$

Provided the function $f(k, m)$ is subexponential in m (and it is most likely and natural to have this function being linear in m), an estimate for m would follow, which would in turn give an estimate for the p-length.
Generalized p-central or powerful Sylow p-subgroup

REFERENCES

E. I. Khukhro

Sobolev Institute of Mathematics, 630090, Novosibirsk, Russia

Email: khukhro@yahoo.co.uk