Gonadotropin-Releasing Response to Kisspeptin-10 and Its Modulation by Progesterone in Postpartum Cyclic Cows

INTRODUCTION

Kisspeptin is a neuropeptide hormone encoded by Kiss-1 (Gottsch et al. 2009) in the hypothalamus. Kisspeptin and its functional ligand, G-protein-coupled receptors (GPR54), play a pivotal role in regulating the secretion of gonadotropins through a mechanism dependent on gonadotropin-releasing hormone (GnRH) (Gottsch et al. 2004; Irwig et al. 2004; Navarro et al. 2005) in both prepubertal and adult animals (Gottsch et al. 2004). The effect of kisspeptin on the gonadotropins secretion has been studied in prepubertal female calves (Kadokawa et al. 2008; Ezzat et al. 2009), male calves (Ezzat et al. 2009), and ovariectomized cows (Whitlock et al. 2008). However, the gonadotropin-releasing response to kisspeptin in cyclic adult cows remains unclear. Progesterone (P4), an ovarian steroid hormone, is known to be a major regulator of the secretion of gonadotropins (Mahesh and Brann, 1998) via modulation of GnRH. Studies in vivo (O'Byrne et al. 1991; Skinner et al. 1998) and in vitro (Genazzani et al. 1995; Baulieu, 1998; Mensah-Nyagan et al. 1999) demonstrated that high concentrations of P4 inhibit the secretion of GnRH and consequently the release of gonadotropins. However, whether or not the concentration of P4 in cyclic cows affects the secretion of gonadotropins in response to kisspeptin has yet to be examined.

ABSTRACT

The present study aimed to evaluate the effect of kisspeptin-10 (Kp10), a shorter variant of kisspeptin retaining full biological activity, on the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) in cyclic adult cows, and the effect of plasma progesterone (P4) concentration on the response to Kp10 administration. The experiments were performed using five postpartum cows (4-5 years old) treated with a progesterone-releasing intravaginal device (PRID) for 7 days. The animals received a single intravenous (i.v.) injection of Kp10 (5 μg/kg b.w.: 3.85 nmol/kg b.w.) for three consecutive days after the device’s removal. Plasma concentrations of P4 were higher on the day of the PRID’s removal (day 0: 7.3±1.1 ng/mL) than 1 (day 1: 0.8±0.1 ng/mL) and 2 (day 2: 0.6±0.1 ng/mL) days later (P<0.05). Kp10 did not alter plasma LH concentrations significantly at day 0. However, it significantly stimulated the release of LH on day 1 and day 2 (P<0.05). Kp10 tended to stimulate the release of FSH at day 2; however, it did not alter the concentrations of FSH in plasma significantly throughout the experiment. The results showed that Kp10 stimulates the release of LH in postpartum cyclic cows, and suggested that high concentrations of P4 in plasma may reduce the effect of kisspeptin on the secretion of gonadotropins.

KEY WORDS: cow, FSH, kisspeptin-10, LH, progesterone.
The present study aimed to evaluate the gonadotropin-releasing response to kisspeptin in cyclic adult cows and the sensitivity of the response at high and low concentrations of P₄ in plasma. Postpartum cyclic cows were treated with a progesterone-releasing intravaginal device (PRID) and the gonadotropin-releasing response to kisspeptin-10 (Kp10) (a shorter variant of kisspeptin retaining full biological activity) was investigated after removal of the PRID.

MATERIALS AND METHODS

Kisspeptin-10 (Kp10)

Human Kp10 amide (amino acid sequence: YNWNSFLRF-NH₂) was synthesized in our laboratory (Ezzat et al. 2009; Hashizume et al. 2010). The peptide has been confirmed to stimulate the release of gonadotropins in goats (Hashizume et al. 2010) and cattle (Ezzat et al. 2009) in studies in vivo.

Animals

Five Japanese black cows (age, 4-5 years; mean body weight (b.w.) ± SEM, 439±23 kg) were used. They were at 119 ± 16 (Mean±SEM) days postpartum. Their calves were weaned 46 ± 16 days before the experiment. Estrus was detected in all cows by the day of the experiment. The animals were housed in pens, with natural light allowed to enter through windows. They were fed hay and concentrate at 0930 h and 1600 h daily. The residuum of hay was removed at each feeding time. Water was available continuously. The animals were not fed before or during the experiment; they were fed only after the experiment. The experiments were performed from April to June in Morioka, Japan. All animal care and experimental protocols were approved by the Animal Care and Use Committee of Iwate University.

Experimental design

Progesterone treatment

Progesterone-releasing intravaginal devices (PRID; each spiral contains 1.55 g of progesterone (P₄) and 10 mg of estradiol (E₂) benzoate; Aska Pharmaceutical, Tokyo, Japan) were used. The cows were intramuscularly injected with 100 µg of a gonadotropin-releasing hormone (GnRH) analogue (Conceral; Nagase Medicals, Itami, Japan) at the time of the PRID’s insertion (1500 h). After seven days, the spirals of the PRID were removed at 1500 h and each animal was intramuscularly injected with 500 µg of a PGF₂α analogue.

Intravenous (i.v.) injection of Kp10

Cows were given a single i.v. injection of Kp10 (5 µg/kg b.w.: 3.85 nmol/kg b.w.) at 1500 h for three consecutive days after PRID withdrawal; day 0 (the day of the PRID’s withdrawal), day 1 (1 day after its removal) and day 2 (2 days after its removal). The doses of Kp10 were chosen according to results of preliminary experiments (Ezzat et al. 2009; Hashizume et al. 2010). Kp10 was injected into freely moving animals via an indwelling catheter previously inserted into one of the external jugular veins.

Blood sampling

Within a period of 60 minutes before Kp10 injection, blood samples (2.5 mL each) were collected every 20 minutes. At 0 min, the blood samples were collected followed by immediate Kp10 injection. Within a period of 60 minutes after Kp10 injection, blood samples were collected every 10 minutes. Thereafter, blood samples were collected every 20 minutes for another 100 minutes. The blood was collected from 1400 h to 1740 h. It was collected from the indwelling catheter into centrifuge tubes containing heparin and immediately chilled with ice. Individual plasma samples were obtained after centrifugation (2500 xG) and stored at -30 °C until assayed for P₄, LH, and FSH.

Hormone assay

Concentrations of P₄ in plasma were measured by double-antibody enzyme-immunoassay (EIA) after extraction with diethyl ether. The EIA for P₄ was performed as described previously (Prakash et al. 1987) but with some modifications. Ninety six-well ELISA plates (Corning Glass Works, Corning, NY) were coated with 50 µg of anti-rabbit IgG (Seikagaku Co., Tokyo, Japan). Twenty five µL of standard or sample was incubated with 100 µL of P₄ antibody solution (1:100000; HAC-AAb3-06RBP841) for 24 h at 4 °C. The mixture was decanted, 100 µL of horse-radish peroxidase (HRP)-progesterone 3-(o-carboxymethyl) oxime was added (1:10000; P₄-HRP), and the incubation was continued a further 2 h at 4 °C. The assay’s sensitivity was 0.1 ng/mL and the intraassay coefficient of variation (CV) was 8.9 %.

Concentrations of LH and FSH in plasma were measured by a double-antibody radioimmunoassay procedure with slight modifications (Hashizume et al. 1999; Hashizume et al. 2010). The standard preparation and the hormone for iodination were both USDA-bLH-B-6 for LH, and AFP5346D and AFP5318C, respectively, for FSH. Assay sensitivities for LH and FSH were 0.41 and 0.08 ng/mL, respectively. All samples were assayed in a single run. The intraassay CV was 10.8% for LH and 5.5% for FSH.

Statistical analysis

All data from the experiments are presented as mean ± SEM. The significant differences in plasma LH and FSH concentrations between sampling times were analyzed with
a repeated measure ANOVA, and the differences between sampling times before and after injections were determined using the Newman-Keuls test. The statistical significance of differences in plasma P₄ concentrations and the area under the curve (AUC) for LH among the days after removal of the PRID was determined by one-way ANOVA, and the Newman-Keuls procedure was used as a post-hoc test. All data were analyzed using Graph-Pad Prism (GraphPad Software, San Diego, CA, USA). Results were considered significant at the P<0.05 level.

RESULTS AND DISCUSSION

Plasma P₄ profiles in cows after removal of the PRID are shown in Figure 1.

![Figure 1](image1.png)

Figure 1 Plasma concentrations of progesterone (P₄) in cows at day 0, day 1, and day 2 after removal of the progesterone-releasing intravaginal device (PRID). Each value represents the mean ±SEM for five animals. Different letters (a, b) on bars denote significant differences at P<0.05.

Plasma progesterone concentrations were higher at day 0 than at day 1 or day 2 (7.3±1.1, 0.8±0.1, and 0.6±0.1 ng/mL, respectively. However, there was no significant difference between day 1 and day 2. The plasma concentrations of LH in response to the i.v. injection of 5 µg/kg b.w. of Kp10 after removal of the PRID are shown in Figure 2. Kp10 did not alter the mean concentration significantly at day 0 (Figure 2a). However, it stimulated the release of LH significantly at day 1 and day 2 (Figure 2b and Figure 2c, respectively) (P<0.05). The concentrations at 20 and 30 min (Figure 2b), and 20 to 60 min (Figure 2c) after Kp10 administration were higher than the concentrations before (P<0.05). The AUC of LH for 60 min after the injection of Kp10 was significantly greater at day 1 and day 2 than at day 0 (77.5±3.4, 82.9±3.2 and 54.9±4.3 ng.min.mL⁻¹, respectively) (Figure 3). The plasma concentrations of FSH in response to the i.v. injection of 5 µg/kg b.w. of Kp10 after removal of the PRID are shown in Figure 4. After Kp10 administration, the mean plasma FSH concentrations at day 0 (Figure 4a) or day 1 (Figure 4b) was not different from those observed before Kp10 injection. The FSH-releasing response to Kp10 tended to increase at day 2 (Figure 4c).

Kp10 stimulated the release of FSH in 4 of 5 animals; however, there was no significant difference in the mean plasma concentration compared with pre-injection values.

Several studies have reported a stimulatory effect of kisspeptin on the secretion of gonadotropins in cattle. Kisspeptin stimulated the release of gonadotropins in prepubertal female calves (Kadokawa et al. 2008; Ezzat et al. 2009), male calves (Ezzat et al. 2009), and ovariectomized cows (Whitlock et al. 2008). However, the gonadotropin-releasing response to kisspeptin in adult cyclic cows remains unclear.
Moreover, in a recent study (Stevenson, 2008), PGF2α delayed the release of LH when plasma P4 concentrations were before the PRID’s removal, and quickly declined one day after the rapid decline in the P4 concentration. Following these treatments, P4 concentrations remained high up to the day before the PRID’s removal, and quickly declined one day after its removal in the present study. Kp10 failed to stimulate the release of LH when plasma P4 concentrations were high, but significantly stimulated it when plasma P4 concentrations decreased to values less than 1 ng/mL.

The present study showed that Kp10 stimulated the release of LH in postpartum cyclic cows. However, the response to Kp10 was less potent than that in our previous study using prepubertal female and male calves (Ezzat et al., 2009). The maximum LH concentration after injections of Kp10 in female and male calves was 7.2 and 17.4 ng/mL, respectively, higher than the value on either Day 1 (1.45 ng/mL) or Day 2 (1.54 ng/mL) in the present study. The maximum LH concentration after injections of Kp10 in prepubertal female calves in another study (Kadokawa et al., 2008) was also higher (5.0 ng/mL) than that in the present study. The maximum LH concentration in our study was similar to that in ovariectomized parous cows (1-1.4 ng/mL) (Whitlock et al., 2008). Therefore, the results in the present study suggest that the effect of kisspeptin on the secretion of LH is lower in adult cows when compared to prepubertal female or male calves.

Higher concentrations of P4 in plasma reduced the response to kisspeptin. The effect of P4 on the secretion of gonadotropins has been investigated both in vivo (O’Byrne et al., 1991; Skinner et al., 1998) and in vitro (Sim et al., 2001).

A luteal increase in P4 was found to inhibit the secretion of GnRH (Skinner et al., 1998; Robertson et al., 2009) and subsequently the secretion of both LH and FSH (Robertson et al., 2009). P4 receptors were detected on pituitary gonadotropes (Fox et al., 1990), and P4 inhibited the release of gonadotropins after 12-h incubation with cultured pituitary cells (Lesoon and Mahesh, 1992). Several studies in vivo and in vitro have found that the inhibitory effect of P4 on the release of gonadotropins occurs via the hypothalamic GnRH pathway, and that P4 suppresses the secretion of GnRH by binding to its cytoplasmic and nuclear receptors (Calogero et al., 1998; Skinner et al., 1998; Sleiter et al., 2009). However, the precise mechanism through which P4 influences the secretion of gonadotropins is unclear (Sim et al., 2001).

Further study will be needed to clarify the mechanism by which P4 influences the kisspeptin-induced release of gonadotropins in cows with regard to the level of gonadotropin-inhibiting factors. Kp10 failed to stimulate significant secretion of FSH regardless of the concentration of P4. This result suggests that less FSH than LH is secreted in response to Kp10 in cows. However, the individual variation of FSH secretion observed among animals may be due to presence of other factors which solely regulate the FSH secretion; i.e. activin and inhibin. The i.v. injection of Kp10 in prepubertal female calves and male calves had a less potent effect on FSH than LH levels (Ezzat et al., 2009). The increase in FSH induced by kisspeptin showed a more gradual onset and was less marked than that of LH in pigs (Lents et al., 2008). The central administration of kisspeptin-54 caused a slight but not significant increase in FSH levels as opposed to a significant increase in LH levels in mice (Gottsch et al., 2004). Our results are, in part, consistent with these reports. However, the secretion of FSH is not fully under the control of GnRH (Kile and Nett, 1994; Phillips, 2005). In conclusion, the present findings show that Kp10 stimulated the release of LH in postpartum cyclic cows, and suggest that high concentrations of P4 in plasma may reduce the effect of kisspeptin on the secretion of gonadotropins.
ACKNOWLEDGEMENT

The three first authors (A. Ahmed Ezzat, Y. Goto and H. Saito) contributed equally to this work. The authors wish to thank Dr. A.F. Parlow, National Hormone and Peptide Program, Harbor-UCLA Medical Center, Torrance, CA, USA for providing bFSH (AFP5346D, AFPS318C) and the bFSH antiserum (AFP-C5288113); and Dr. T. Matozaki, Laboratory of Biosignal Science, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan for providing the progesterone antiserum (HAC- AAAb3-06RBP841). This research was supported in part by a Grant-in-aid for Scientific Research (No.21380169) provided by the Japan Society for the Promotion of Science (JSPS).

REFERENCES

Stevenson J.S. (2008). Progesterone, follicular, and estrual responses to progesterone-based estrus and ovulation synchroni-

Surf and download all data from SID.ir: www.SID.ir

Translate via STRS.ir: www.STRS.ir

Follow our scientific posts via our Blog: www.sid.ir/blog

Use our educational service (Courses, Workshops, Videos and etc.) via Workshop: www.sid.ir/workshop