Efficiency of domestic reverse osmosis (RO) in removal of trihalomethanes (THMs) from drinking water

S. Mazloomi, R. Nabizadeh, S. Nasseri, K. Naddafi, S. Nazmara, A. H. Mahvi

School of Public Health and center for environmental researches, Tehran University of Medical Sciences, Tehran, Iran
National Institute of Health Research, Ministry of Health, Tehran, Iran

Received 26 August 2009; revised 2 October 2009; accepted 27 October 2009

ABSTRACT
The reaction of disinfectants with natural organic materials (NOM) existing in water lead to the formation of Disinfection By-Products. Potentially hazardous and carcinogenic characteristics of THMs recognized. Thus removal of THMs or THMs precursor is necessary for human health the aim of this study was to research of efficiency of domestic reverse osmosis (RO) in removal of trihalomethanes (THMs) from drinking water. In this study was used pilot scale of RO system with Polyamide membrane as Spiral-Wound, Tape wrapping module. Feed solution was made by using of pure chloroform. The samples containing chloroform were analyzed using a gas chromatograph, which equipped with a flame ionization detector. By increasing the flow, the removal rate of chloroform decrease and with declining removal of EC, the removal of chloroform was declined too. In this research, at worst condition, the efficiency of the pilot scale reverse osmosis reached to 80 % removal of chloroform.

Keyword: Polyamide membrane, Reverse osmosis, Trihalomethanes, Precursor, Gas chromatograph

INTRODUCTION
The reaction of disinfectants with natural organic materials (NOM) existing in water lead to the formation of Disinfection By-Products (DBPs). One of the most used disinfectants is chlorine, which reacts with NOMs and forms halogenated DBPs including trihalomethanes, haloacetic acids, haloacetonitriles, haloaldehydes, haloketones, chlorophenols, chloropicrin (Stevens et al., 2005; Zazouli et al., 2007a; Christman et al., 1983). Water samples with high dissolved organic matter (DOM) concentration have a higher chlorine demand compared to usual raw water and thus the formation of trihalomethanes take place (Lim et al., 2006). For the first time in 1974, THMs were detected in water by U.S.EPA, Swiss and, Netherlands researcher (Samadi et al., 2006).

Many factors interfere in formation of THMs including pH, temperature, contact time, concentration and properties of chlorine and NOMs, residual chlorine, and bromide concentration (Singer 1993; Singer 1994; Zazouli et al., 2007b). By increasing the pH and the contact time, formation of THMs increases too (Nikolaou et al., 2004; Krasner et al., 1989). When temperature increases, reactions take place much faster and consumption of chlorine increases, which lead to higher formation of DBPs(Williams 1997; Golfinopoulos et al., 1993; Golfinopoulos et al., 1994; LeBel et al., 1995). Many of THMs can be produced due to reaction of chlorine with NOMs, but the major ingredients of THMs that are present in water are : Bromodichloromethane (CHBrCl₂), Bromoform (CHBr₃), Chloroform
(CHCl₃) and Dibromochloromethane (CHBr₂Cl₂) (Golfinopoulos et al., 1996). In 1979 for regulation of disinfection by-products, USEPA has set a Maximum Contaminant Level (MCL) for total THMs equal to 0.100 mgL⁻¹ as an annual average (Samadi et al., 1996). According to Disinfectants/DBPs Stage 1 rule in 1994, USEPA lowered the MCL for total THMs from 0.100 to 0.080 mgL⁻¹ (U.S. EPA, 1998a). In 1999, according to Industrial research and Iranian Standard Institute for physical and chemical quality of drinking water, a Maximum Contaminant Level of 200µgL⁻¹ is set for CHCl₃ (IRSII 1997).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHCl₃</td>
<td>0.200</td>
<td>0.000*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CHClBr</td>
<td>0.060</td>
<td>0.000*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CHBr₂</td>
<td>0.100</td>
<td>0.000*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>THMs (WHO≤1)**</td>
<td>0.010</td>
<td>0.100</td>
<td>0.250</td>
<td>0.100</td>
<td>0.2***</td>
<td></td>
</tr>
</tbody>
</table>

*Maximum Contaminant Level Goals (MCGL)
**the sum of the ratios of the THM levels to the guideline values should not exceed 1.
***the sum of THMs described as CHCl3

Table 1: Standards/Guidelines related to THMs (mg/l) in various zone of the World (Sadiq and Rodriguez, (2004)(15)

Potentially hazardous and carcinogenic characteristics of THMs are recognized (Bull and Robinson, 1986). Therefore, many studies have been done to remove the precursor of THMs or produced THMs from drinking water. One of the most important factors to control THMs formation is precursor removal including coagulation of THMs, granular activated carbon adsorption, membrane filtration processes, and nanofilters with membranes having molecular weight cut-offs of 200–500 Daltons. Powder activated carbon adsorption and preozonation) Mesdaghinia et al., 2005; Zazzoli et al., 2008; Sandrucci et al., 1995; Premazzi et al., 1997). Another method is alternative disinfectants including use of monochloramine, Ozone, Chlorine dioxide, Permanganate, UV light, Ozone and chlorine dioxide are prevalent alternative disinfectants in the United States and in Europe (Cowman and Singer, 1994; Blatchleye et al., 1996; Richardson et al., 1996). Combinations of technologies can also prevent the formation of THMs (ozone-monochloramine, hydrogen peroxide-ozone, UV-ozone, UV-hydrogen peroxide) (Golfinopoulos et al., 1996). Third approach for controlling of DBPs is DBP removal after production that can be removed with several methods such as: air stripping, membrane technology, Granular activated carbon (Premazzi et al., 1997).

Membrane technology is applicable in water treatment, advance wastewater treatment, and also in upgrading wastewater treatment plants (Naghizadeh et al., 2008). Reverse osmosis (RO) similar to nanofiltration, microfiltration, and ultrafiltration is a pressure technology. For many purpose the use of RO for water treatment is very wide. This process for first time observed in 1748 by Jean Antoin Nollet. The materials used for most RO membrane are cellulose derivatives and polyamide derivatives. Many of them can remove 99% of dissolved material and have molecular weight cut-off in the range of 50 to 100 Dalton (Crittennden et al., 2005). The membrane type and pore size are two important factor in rejection of contaminants.

The EPA has recommended that RO is a best available technology (BAT) for removal of many inorganic contaminants such as, antimony, arsenic, barium fluoride, nitrate, nitrite, and selenium as well as radionuclides, such as beta particle, and photon emitters, alpha emitters, and radium-226. Also RO can be effective in removal of large MW synthetic organics such as pesticides (Crittennden et al., 2005). The aim of this study was to research the efficiency of domestic reverse osmosis (RO) in removal of trihalomethanes (THMs) from drinking water.

MATERIAL AND METHODS
In this research a pilot scale reverse osmosis set with spiral module was used. The RO material was Polyamide Spiral-Wound, Tape wrapping module made in Korea (model NO.RE2012-100) with Permeate Flow rate as gpd (L/day) equal 100
Fig. 1: Schematic of separation process through reverse osmosis membrane

Any RO system has two flows that include permeate and concentrate flow (rejected). In this RO pilot the quantities of these flows were equal to 60 and 40 %, respectively. Molecular weight cut-off is approximately 100 Daltons. After any shut down of RO, for next operation, it must be cleaned. The RO membrane was cleaned using 4.5 L of diluted HCl solution. The cleaning solution was circulated through the membrane module for one hour. The units were then rinsed with deionized water for approximately 10 min. Then the filter was taken out from cartridge and dried in free air. For controlling the process, before any operation the diluted water was injected and a sample was taken.

The samples contain THMs (chloroform) were analyzed using a gas chromatograph (GC) model CP-3800 Australia VARIAN Company, Which equipped with a flame ionization detector (GC-FID with COMBIPAL HS auto sampler. The analysis was made using headspace technique. After preparation of solutions used of 10 ml headspace vials which was filled 5 ml of sample into it with a 5 ml sterile pipit. After equilibrating the samples in an oven at 70 °C for 5 minutes, 300 µl of the headspace was then injected into the GC (CP- SIL 8 CB column model, 30 m x 0.32 mm, 0.25 μm film thickness, VARIAN, Australia). The column program was 35 °C (hold time of 8 minutes), 9 °C/minutes to
100 °C (hold time of 8 minutes). The inlet was set at 100 °C, and temperature of FID was 280. The carrier gas was helium with 11 PSI pressure a rate of 35 ml/min, and nitrogen gas was supplied as makeup gas. The calibration standard curves were prepared by using of chloroform. The calibration standard curves were prepared in the range of 0 – 600 µg/L of chloroform in pure water.

RESULT
Findings are summarized in table 2 and fig 2 and 3. Table 2 and fig 2 show the results of transmitted samples from Ro set with variation of THMs, EC concentration and flow. Pay attention to numbers and type of samples, the whole results analyzed by use of statistical methods. According to these results, significant relation (P-value<0.05) exist between removal of chloroform concentration and EC concentration has in variety flow. Table 2 and fig 2 and 3 show that with increasing the flow, the removal rate of chloroform decreases. By decreasing EC, the removal of chloroform was decrease too. It can concluded that the removal rate of chloroform is related with EC concentration (P-value<0.05). By increasing the chloroform concentration from 100 µg/l to 500 µg/l, the removal rate was decrease (P-value<0.05).

According to table number 2, maximum average removal of chloroform and EC was related to one pump condition at 100 µg/l and 100 µs/cm average primary concentration of chloroform and EC, which were equal to 85.67 and 90.46 %, respectively. Minimum average removal of chloroform and EC was related to two pump conditions at 500 µg/l and 1000 µs/cm average primary concentration of chloroform and EC, respectively which were equal to 81.98 and 88.22 %, respectively.

<table>
<thead>
<tr>
<th>Chloroform concentration (µg/l)</th>
<th>Removal efficiency of CHCl (two pump) %</th>
<th>Removal efficiency of CHCl (single pump) %</th>
<th>Removal efficiency of EC (two pump) %</th>
<th>Removal efficiency of EC (single pump) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>83.78</td>
<td>85.67</td>
<td>88.85</td>
<td>90.46</td>
</tr>
<tr>
<td>300</td>
<td>82.48</td>
<td>84.74</td>
<td>89.57</td>
<td>90.05</td>
</tr>
<tr>
<td>500</td>
<td>81.98</td>
<td>83.91</td>
<td>88.22</td>
<td>89.34</td>
</tr>
</tbody>
</table>

Results show that with increase in EC from 100 µs/cm to 1000 µs/cm, removal efficiency of chloroform decrease from 100 to 300 µg/l was. In this research it was found at worst condition in pilot scale of reverse osmosis, 80 % removal of chloroform is accessible.

DISCUSSION
According to the results, domestic reverse osmosis can be used as a process for removal of THMs at point of use (POU), which the rate of removal (efficiency of RO) of it need to many condition. Some of these conditions discussed

Fig. 2: removal efficiency of chloroform and EC at single pump condition (0.75 l/min)

Fig. 3: removal efficiency of chloroform and EC at two pumps condition (1.73 l/min)
above but availability of electricity or water with high pressure and etc agents are necessary.
p.c.mayankutty and et al indicated that the trihalomethanes concentration of the finished water as well as the chlorinated well water from the three sea water desalination plants in the Eastern Province of Saudi Arabia, which supplied the city of Riyadh and several other areas were significantly lower than the maximum contaminant levels set by WHO and various national organizations (Mayankutty et al., 2005).

Z. Pawlak and et al in 2005 founded that more than 98.5% reduction of arsenic by means of reverse osmosis systems in pilot study (Pawlak et al., 2006).

It is also noted that Chungsying Lu and et. al in 2005 remarked that nanotubes can absorb trihalomethanes from water as well as they found that CHCl₃, is the most preferentially adsorbed onto CNTs, followed CHBrCl₂, CHBr₂Cl and then CHBr₃ (Chungsying et al., 2005).

REFERENCES

Singer, P. C., (1993). Formation and characterization of

