Identification of Theileria species in sheep in the eastern half of Iran using nested PCR-RFLP and microscopic techniques

Heidarpour Bami, M. 1; Khazrainia, P. 2; Haddadzadeh, H. R. 3* and Kazemi, B. 4

1Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; 2Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; 3Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; 4Department of Parasitology, Cellular and Molecular Biology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

*Correspondence: H. R. Haddadzadeh, Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. E-mail: hhadad@ut.ac.ir

(Received 24 Jun 2009; revised version 20 Jan 2010; accepted 31 Jan 2010)

Summary

Theileria species are common in tropical and subtropical regions and cause great economical losses in ruminants. Two species, T. lestoquardi and T. ovis, are suspected to cause ovine theileriosis in Iran. The epidemiological aspects of ovine theileriosis in Iran are poorly understood and further investigations by sensitive and precise techniques are required. In a previous study, a sensitive and specific PCR-RFLP method was used for the identification of Theileria spp. in sheep. In the present study, Theileria species involved in ovine theileriosis were determined in five different regions in eastern half of Iran (Zabol, Lar, Ferdows, Semnan and Gorgan). Blood samples were collected in EDTA. Of 220 blood samples obtained from sheep in different regions, 60% (132.220) were positive for Theileria spp. by nested-PCR compared with 22.27% (49.220) by microscopic examination. Using RFLP of PCR products, out of 132 positive blood samples, 55.3% (73.132) were positive for T. lestoquardi and 44.7% (59.132) were positive for T. ovis. The infection with these two Theileria species in different areas is compared in the article. This is the first report in which ovine theileriosis has been studied in different regions in Iran using molecular identification techniques.

Key words: Ovine theileriosis, Theileria ovis, Theileria lestoquardi, Nested PCR-RFLP, Iran

Introduction

Tick-borne protozoan parasites of the genus Theileria infect wild and domestic ruminants in the tropical and subtropical regions of the world. Although Theileria infection in cattle has been extensively studied, little is known about theileriosis in sheep (Gao et al., 2002). Recently, interest has arisen in sheep-infecting Theileria parasites. Among known Theileria parasites of sheep, Theileria lestoquardi and Theileria spp. from North China are considered highly pathogenic. The other species, Theileria ovis, Theileria separata and Theileria recondita cause subclinical infection in small ruminants (Altay et al., 2005).

In order to prioritize future research on the development of improved control measures against tick-borne diseases, it is essential to define the prevalence of tick-borne pathogens in target populations (Oura et al., 2004). The precise identification of these organisms is essential to understand their epidemiology and classification. The methods traditionally used to detect and identify these hemoparasites consist of microscopic examinations of thin blood smears and serological tests. In contrast to these conventional methods, the application of molecular techniques would allow direct, specific and sensitive detection of parasites, and rapid, simultaneous detection and differentiation of different Theileria infecting a given animal (Schnittger et al., 2004). We have developed a nested-PCR for
amplification of a fragment of the 18S ribosomal DNA from virtually all species of *Theileria*. For the differentiation of various *Theileria* spp. a RFLP assay was used as a diagnostic tool enabling direct, concurrent, highly specific and sensitive identification of *Theileria* spp. (Heidarpour Bami et al., 2009).

Two species, *T. lestoquardi* and *T. ovis*, are suspected to cause ovine theileriosis in Iran (Hashemi-Fesharaki, 1997). *Theileria lestoquardi*, which is a causal agent of malignant ovine theileriosis (Hooshmand-Rad and Hawa, 1973) was frequently reported from different parts including east and south-east regions (Hashemi-Fesharaki, 1997; Razmi et al., 2003), and Fars province (Spitalska et al., 2004). According to clinical and morphological observations, *T. ovis* is widespread throughout the country (Hashemi-Fesharaki, 1997). However, the epidemiological aspects of ovine theileriosis in Iran are poorly understood and further investigations are required (Haddadzadeh et al., 2004).

The aim of the present study was to determine various *Theileria* species involved in ovine theileriosis in some endemic regions of Iran.

Materials and Methods

Blood samples were collected in EDTA from sheep exposed to Ixodid ticks in five geographical areas in Iran (Zabol, Lar, Ferdows, Semnan and Gorgan). A total of 220 sheep from 25 flocks (five flocks in each area) were sampled to detect the presence of various *Theileria* spp. by microscopic examination and PCR-RFLP methods. Blood was used to prepare thin blood smears for microscopic examination and to extract DNA for PCR analysis. Blood smears were fixed with methanol for five min, stained with Giemsa at a dilution of 5% in buffer solution for 30 min, and then examined for the presence of *Theileria* piroplasms under light microscopy. The blood smears were recorded as negative for *Theileria* sp. if no piroplasms were observed in 200 oil-immersion fields. DNA was extracted using a DNA isolation kit (Maleic acid-buffered saline with 0.1% Tween 20 (MBST), Iran) according to the manufacturer’s instructions. DNA was stored at -20°C until subsequent analysis.

In a previous study, we described a new PCR-RFLP method for the differentiation of various *Theileria* spp. in sheep (Heidarpour Bami et al., 2009). Two pairs of universal screening primers were designed to amplify the DNA of all *Theileria* spp. Outer primers for the primary PCR were forward strand primer Thei F1 5’- AAC CTG GTT GAT CCT GCC AG-3’ and reverse strand primer Thei R1 5’- AAA CCT TGT TAC GAC TTC TC-3’. The PCR product of the primary PCR was 1700 bp. The nested inner primers were forward strand primer Thei F2 5’- TGA TGT TCG TTT YTA CAT GG-3’, and reverse strand primer Thei R2 5’- CTA GGC ATT CCT CGT TCA CG-3’. After the second PCR, a monomorphic DNA fragment of 1417-1426 bp size was produced. For the differentiation of various *Theileria* species (*T. annulata*, *T. lestoquardi*, *T. ovis*, *Theileria spp. china* and *T. separata*), restriction fragment length polymorphism (RFLP) of PCR products of the 18S rRNA gene of *Theileria spp.* was done. The enzymes *Hpa II*, *Bsh 1285 I* and *Hae II* were found to differentiate between the five species. Conditions for the primary and nested-PCR and for RFLP have been described in the previous study (Heidarpour Bami et al., 2009).

Results

Blood samples were collected in EDTA from 220 sheep in five endemic areas in Iran. Thin blood smear examination of sheep showed that 22.27% (49.220) were positive for *Theileria* spp. piroplasms. Using nested PCR (Fig. 1), 60% (132.220) of sheep were positive. All of the positive samples by thin blood smears were also determined to be positive by nested PCR, whereas no piroplasm were seen by light microscopy in 83 PCR positive animals. After comparison of the results obtained from the two techniques, kappa value was calculated to be 0.371. Using RFLP of PCR products (Fig. 2), out of 132 positive blood samples, 55.3% (73.132) were positive for *T. lestoquardi* and 44.7% (59.132) were positive for *T. ovis*.

263
The infection rate with various *Theileria* spp. in different areas is shown in Table 1.

Discussion

Four *Theileria* species (*T. lestoquardi*, *T. ovis*, *T. separata* and *Theileria* spp. china) can cause theileriosis in sheep. It is difficult to differentiate these species on the basis of the morphology of piroplasm and schizont stages, especially in mixed infections (Altay et al., 2005).

Two species, *T. lestoquardi* and *T. ovis*, have been considered to cause ovine theileriosis in Iran (Hashemi-Fesharaki, 1997). However, a paucity of information exists concerning the epidemiology of ovine theileriosis in Iran. In the present study, infection with various *Theileria* spp. in sheep in some regions of Iran was diagnosed using PCR-RFLP method.

The results obtained from field samples collected from sheep indicated that amplification of parasite DNA is more
Table 1: Prevalence of *Theileria* spp. infection in five endemic areas in Iran

<table>
<thead>
<tr>
<th>Location</th>
<th>Infection with Theileria spp.</th>
<th>Infection with T. lestoquardi</th>
<th>Infection with T. ovis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferdows</td>
<td>40% (20/50)</td>
<td>100% (20/20)</td>
<td>0%</td>
</tr>
<tr>
<td>Zabol</td>
<td>72% (36/50)</td>
<td>80.55% (29/36)</td>
<td>19.45% (7/36)</td>
</tr>
<tr>
<td>Lar</td>
<td>65% (26/40)</td>
<td>76.92% (20/26)</td>
<td>23.08% (6/26)</td>
</tr>
<tr>
<td>Semnan</td>
<td>72.5% (29/40)</td>
<td>13.79% (4/29)</td>
<td>86.21% (25/29)</td>
</tr>
<tr>
<td>Gorgan</td>
<td>52.5% (21/40)</td>
<td>0%</td>
<td>100% (21/21)</td>
</tr>
</tbody>
</table>

sensitive than detection by light microscopy. These results are similar to those observed by d’Oliveira et al. (1995), Kirvar et al. (1998), Kirvar et al. (2000), Aktas et al. (2002), and Altay et al. (2005). This study also revealed that subclinical infections are common, and cannot be detected by microscopy examination.

Two species of *Theileria* were identified in sheep flocks in the different regions. Field observations showed that ovine theileriosis is limited to some areas in south and south-east Iran (Razmi et al., 2006). The results in the present study also confirmed a high prevalence of *T. lestoquardi* infections in sheep in the Ferdows, Lar and Zabol areas (in the south and south-east of Iran), as was reported by Hashemi-Fesharaki (1997), Razmi et al. (2003), Spitalska et al. (2004), Razmi et al. (2006), and Sparagano et al. (2006). These areas are situated in places with a mean annual temperature of 20-25°C. Haddadzadeh et al. (2004) have shown that environmental temperature and the number of ticks on the sheep can be limiting factors on the geographical distribution of malignant ovine theileriosis in Iran, and areas with a mean annual temperature of 20-25°C are the most suitable areas for development of Ixodid ticks and *Theileria lestoquardi* infection. But in the northern parts of Iran, the limiting factor for *T. lestoquardi* infection is low temperature (Haddadzadeh et al., 2004). The low infection with *T. lestoquardi* in the Gorgan and Semnan areas (in the north of Iran) confirmed that the climatic factors can affect the prevalence of malignant ovine theileriosis.

Infection with *T. ovis* was very high in the Semnan and Gorgan areas and this species was also observed in the Lar and Zabol regions. The results were similar to those reported by Hashemi-Fesharaki (1997) and showed that *T. ovis* is widespread throughout the country. It has been shown that *Rhipicephalus bursa*, *Haemaphysalis sulcata* and *Hyalomma anatolicum anatolicum* transmit *T. ovis* (Hooshmand-Rad and Hawa, 1973; Uilenberg, 1981). Sayin et al. (2009) reported that *Rh. bursa* may be the first cause of *T. ovis* infection in Central Anatolia (Turkey). However, there is no information about tick vectors of this species in Iran. Therefore, further investigations are needed to identify the tick vectors of *Theileria ovis* and to determine the *Theileria* spp. infection prevalence in sheep and tick vectors in other endemic regions of Iran.

It has been demonstrated that some *Theileria* and *Babesia* spp. share the same vector, and in most endemic areas sheep are infected by both *theileria* and *babesia*. So, it would be useful to use a method that is able to simultaneously detect these two protozoa. Shayan and Rahbari (2005) showed that a common primer derived from hyper variable region V4 of 18S rRNA can be used for simultaneous differentiation of *Theileria* from *Babesia* by PCR. Further investigations with such methods are needed to detect mixed infections with these two parasites in Iran.

Acknowledgements

This study was supported financially by the University of Tehran. We also acknowledge the Center of Excellence of Pathobiology, the Center of Excellence on Veterinary Research on Iranian Indigenous Animals and Iranian Research Center for Ticks and Tickborne Diseases, IRCTTD for their support.

References

Aktas, M; Dumanli, N; Cetinkaya, B and Cakmak, A (2002). Field evaluation of PCR in detecting *Theileria annulata* infection in cattle in the eastern of Turkey. Vet. Rec.,

Gao, YL; Yin, H; Luo, JX; Ouyang, WQ; Bao, HM; Guan, GQ; Zhang, QC; Lu, WS and Ma, ML (2002). Development of an enzyme-linked immunosorbent assay for the diagnosis of *Theileria* sp. infection in sheep. Parasitol. Res., 88: 8-10.

Kirvar, E; Ilhan, T; Katzer, F; Hooshmand-Rad, P; Zweygarth, E; Gerstenberg, C; Phipps, P and Brown, CGD (2000). Detection of *Theileria annulata* in cattle and vector ticks by PCR using the Tams1 gene sequences. Parasitology. 120: 245-254.

