Short Paper

A study on gastrointestinal helminths of camels in Mashhad abattoir, Iran

Borji, H.*; Razmi, Gh.; Movassaghi, A. R.; Naghibi, A. Gh. and Maleki, M.

Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

*Correspondence: H. Borji, Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. E-mail: hborji@um.ac.ir

(Received 2 Aug 2009; revised version 20 Dec 2009; accepted 28 Dec 2009)

Summary

Abattoir survey was carried out to determine the prevalence of gastrointestinal helminths and the seasonal fluctuations in intestinal worm burdens and faecal worm egg counts of camel in Khorasan Razavi province in the northeast of Iran. A total of 306 dromedaries (Camelus dromedarius) in the Mashhad abattoir, in the northeast of Iran and the capital of Khorasan province were examined between October 2007 and September 2008. By coproscopy examinations, 75.1% of dromedaries were found to be harboring different types of nematod eggs. Faecal flotation revealed the presence of Nematodirus, Strongyloides, Trichuris, Marshallagia, stongyle type nematode eggs. In addition, gastrointestinal tracts of 50 camels slaughtered in the Mashhad abattoir were used for identification and count of helminths. Postmortem examinations revealed that the prevalence of helminths were Trichostrongylus probolurus (64%), Trichuris globulosa (40%), Camelostongylus mentulatus (38%), T. colubriformis (34%), Stilesia globipunctata (30%), Nematodirella dromedarii (22%), Haemonchus longistipes (18%), Nematodirus oiratianus (16%), Cooperia oncophora (16%), Trichuris barbonensis (10%), Parabronema skrjabini (10%), Nematodirella cameli (10%), Marshallagia marshalli (4%), Teladorsagia circumcincta (4%), Moniezia benedeni (3%), Moniezia expansa (3%) and Trichostrongylus vitrinus (2%). Nematodirella dromedarii, Trichostrongylus probolurus, Trichostrongylus colubriformis, Cooperia oncophora, and Nematodirus oiratianus, were identified from dromedary in Iran for the first time. The pathological lesions in the affected abomasums, as well as small and large intestines, were hyperaemic and thickened mucosa with haemorrhagic foci. Histopathological examination revealed inflammatory reaction in the abomasum, flattened mucosa and villous atrophy with inflammatory reactions composed of eosinophils and lymphocytes in the intestines, respectively. The prevalence observed in the present study indicates the necessity of using an anthelmintic drug for increasing the health and productivity of camels.

Key words: Gastrointestinal helminths, Prevalence, Pathology, Camelus dromedarius, Iran

Introduction

The camel has been considered an aid to man for thousands of years in many different respects and has a high economic value by providing meat, milk and wool as well as transportation and labor. Due to its physiological attributes, the camel is the most suitable domestic mammal for use in climatic extremes. Understanding and utilizing this special gift could lead to the development of camel farms in famine areas and a reduction in human starvation. Pathogenic diseases, poor nutrition and traditional management systems have restricted their full utilization (Bekele, 2002).

Gastrointestinal helminths injure their hosts by a wide variety of mechanisms, mainly reduction in voluntary food intake, loss of productivity and diarrhea. However, the clinical manifestation of helminthiosis is subclinical or asymptomatic in which animals appear normal but are performing at below their full potential. The available information about dromedary in Iran are just
the investigation based on post mortem examination with limited numbers of dromedaries within a short period of time (Mirzayans and Halim, 1980; Radfar et al., 2006). Moreover, few studies have been conducted on GI helminths of Camels (El Bihari, 1985; Abdul-Salam and Farah, 1988; Abdul-Mogod, 2001; Bekele, 2002). Hence, the present study was designed to provide preliminary information on the prevalence rates, seasonal abundance and type of helminthes, along with describing both gross and microscopic changes caused by these parasites in camels.

Materials and Methods

Sampling and study area
This study was conducted on 306 dromedaries of different age and sex slaughtered in the Mashhad abattoir, in the northeast of Iran during October 2007 to September 2008. The slaughtered camels were imported from Afghanistan and Pakistan. After slaughtering the dromedaries, faecal samples were collected directly from the rectum and placed in universal sampling bottles. The samples were preserved in ice during transportation to the laboratory and examined within 2 h after sampling.

Faecal examination
Faecal egg counts were determined by the Clayton Lane technique using a saturated solution of sodium chloride as the floating medium to assess the level of infestation (Anon., 1977). Nematode egg percentage was identified using standard parasitological criteria (Anon., 1977; Soulsby, 1982).

Necropsy worm counts
Following slaughter, the entire gastrointestinal tracts of 50 slaughtered dromedaries were collected and examined randomly. Different parts of the gastrointestinal tract were separated by ligature and transported to the laboratory.

Each part was cut longitudinally and the mucosa examined and scraped carefully to remove any adhering worms. The contents of each part were washed into a tray using tap water. The entire washings of the abomasums, and the small and large intestines were completely examined to find the parasites. Identification and counting was conducted based on Yamaguti (1961), Soulsby (1982) and Anon. (1984).

Pathology
The different parts of the gastrointestinal system of the animals including abomasums, small intestine and large intestine were examined for pathological changes. The gross characteristics of the lesions were described and recorded. Selectively, tissue specimens were collected, preserved in 10% formalin solution and processed by routine histopathological techniques and stained with haematoxylin and eosin and examined histologically.

Statistical analysis
For statistical evaluation of the results, SPSS 15 (SPSS for windows Ver. 15) was used. One-way ANOVA test was used to determine the effects of season on fecal egg count and LSD method was applied to analyse seasonal differences. The Chi-square test was used for comparison of infection rate in different seasons (Mead and Curnow, 1983).

Results
Out of the 306 camels examined during the study period, 230 cases (75.1%) were positive for different types of nematode eggs in their faeces (Table 1). The nematode eggs recovered from the camels belonged to Nematodirus, strongyloides, Trishuris, Marshallagia, stongyle type nematodes. The number, type and prevalence of nematode genera recovered from the gastrointestinal tracts of the 50 camels are given in Table 2 and Fig. 1.

Mean EPG in summer was significantly higher than spring and autumn (P<0.0004, P<0.013), but there was no significant difference with winter (P>0.05). However, no significant difference was found between the proportion of infected dromedaries in different seasons (P>0.05).

During the course of study, macroscopic lesions were first seen in abomasums of dromedaries caused by Haemonchus
Table 1: Seasonal prevalence and nematode eggs recovered from dromedary in the abattoir of Mashhad in Khorasan province

<table>
<thead>
<tr>
<th>Season</th>
<th>Sample size</th>
<th>Infected animals and infection rate</th>
<th>EPG max and min</th>
<th>EPG mean ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>89</td>
<td>72 (81.7%)</td>
<td>0-900</td>
<td>41.58 ± 12.61</td>
</tr>
<tr>
<td>Summer</td>
<td>32</td>
<td>27 (84.37%)</td>
<td>0-1500</td>
<td>155.53 ± 55.08</td>
</tr>
<tr>
<td>Fall</td>
<td>138</td>
<td>97 (70.28%)</td>
<td>0-1400</td>
<td>62.74 ± 14.86</td>
</tr>
<tr>
<td>Winter</td>
<td>47</td>
<td>34 (72.34%)</td>
<td>0-1100</td>
<td>85.29 ± 32.97</td>
</tr>
<tr>
<td>Total</td>
<td>306</td>
<td>230 (75.1%)</td>
<td>0-1500</td>
<td>69.75 ± 10.91</td>
</tr>
</tbody>
</table>

Table 2: Prevalence of adult helminths parasites recovered from camels slaughtered at Mashhad abattoir in Khorasan province of Iran (n = 50)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Adult helminths</th>
<th>Prevalence (% 95 CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abomasum</td>
<td>Camelostrongylus mentulatus</td>
<td>38 (23-49)</td>
</tr>
<tr>
<td></td>
<td>Haemonchus longistipes</td>
<td>18 (7.4-28.6)</td>
</tr>
<tr>
<td></td>
<td>Parabronema skrjabini</td>
<td>10 (1.7-18.3)</td>
</tr>
<tr>
<td></td>
<td>Marshallagia marshalli</td>
<td>6 (2.7-9.3)</td>
</tr>
<tr>
<td></td>
<td>Teladorsagia circumcincta</td>
<td>4 (0-9.4)</td>
</tr>
<tr>
<td>Small intestine</td>
<td>Trichostrongylus probolurus</td>
<td>64 (50.7-77.3)</td>
</tr>
<tr>
<td></td>
<td>Trichostrongylus colubriformis</td>
<td>34 (20.9-47.1)</td>
</tr>
<tr>
<td></td>
<td>Nematodirella dromedarii</td>
<td>22 (10.6-33.4)</td>
</tr>
<tr>
<td></td>
<td>Nematodirella cameli</td>
<td>10 (1.7-18.3)</td>
</tr>
<tr>
<td></td>
<td>Nematodirus oiratianus</td>
<td>16 (5.8-26.2)</td>
</tr>
<tr>
<td></td>
<td>Cooperia oncophora</td>
<td>16 (5.8-26.2)</td>
</tr>
<tr>
<td></td>
<td>Trichostrongylus vitrinus</td>
<td>2 (0-5.8)</td>
</tr>
<tr>
<td>Cestodes</td>
<td>Stilesia globipunctata</td>
<td>30 (17.3-42.7)</td>
</tr>
<tr>
<td></td>
<td>Moniezia expansa</td>
<td>4 (0-9.4)</td>
</tr>
<tr>
<td></td>
<td>Moniezia benedeni</td>
<td>4 (0-9.4)</td>
</tr>
<tr>
<td>Large intestine</td>
<td>Trichuris globulosa</td>
<td>40 (26.5-53.5)</td>
</tr>
<tr>
<td></td>
<td>Trichuris barbetonensis</td>
<td>10 (1.7-18.3)</td>
</tr>
</tbody>
</table>

longistipes including thickened walls and edematous folds associated with haemorrhagic foci (Fig. 2). Histologically, there were abundant mucus secreting gastric cells, inflammatory reactions mainly of lymphocytes and eosinophils and hyperemia in the abomasal mucosa of infected animals when compared with non-infected animals.

Trichostrongylus infected small intestines showed mucosal edema with small petechial foci. Histologically there were flattening of the mucosa and villous atrophy, with inflammatory reactions in the lamina propria and less so in the submucosa, where multifocal infiltrates composed of the majority of eosinophils, scarce macrophages, and lymphocytes were observed (Fig. 3). Parasites were often found in superficial channels parallel with the luminal surface.

There were heavy infections of Trichuris spp. in large intestines which caused thickened mucosa with haemorrhagic foci. Histologically, there was flattened epithelium with a few dilated glands, and hyperemia with moderate increase in inflammatory cells composed of eosinophils and lymphocytes (Fig. 4).

Discussion

Few studies have been conducted on the prevalence and pathological lesions of gastrointestinal helminths of dromedary (Camelus dromedarius) in Iran. In the present work, we have carried out a 1 year abattoir survey aimed at determining the prevalence and seasonal incidence of gastrointestinal (GI) helminths of camel in the abattoir of Mashhad. From October 2007 to September 2008, faecal samples were collected from slaughtered camels. From 306 dromedaries examined, 75.1% were infected by nematodes. This finding is in
agreement with that of Bekele (2002) in Ethiopian dromedaries, but lower than camels in Jordan (Sharrif et al., 1997). The coprological examination also showed that strongyle egg type was the most prevalent.

Fig. 1: Identified helminthes from dromedary in Iran (for the first time). A: *Trichostrongylus culobriformis*, B: *Trichostrongylus probolurus*, C: *Nematodirella dromedarii*, D: *Cooperia oncophora*, and E: *Nematodirus oiratianus*

Fig. 2: *Haemonchus longistipes* with barber pole appearance in hyperaemic and edematous abomasum

Fig. 3: Section of small intestine showing villous atrophy, inflammatory cells (eosinophils, macrophages, and lymphocytes) and sections of parasites, (H&E, ×320)

which was consistent with Egyptian dromedaries (Abdul-Mogod, 2001).

Investigation of the adult parasites in the
gastrointestinal organs of 50 dromedaries revealed that, *Camelostongylus mentulatus* had a high prevalence rate in the abomasums, whereas *Haemonchus longistipes*, *Marshallagia marshalli* and *Parabronema skrjabini*, *Teladorsagia circumcincta* were few. *Trichostrongylus probolurus* had a high prevalence rate in the small intestine, but *Nematodirella dromedarii*, *Nematodirella cameli*, *Trichostrongylus colubriformis*, *Trichuris globulosa*, *Cooperia oncophora*, *Nematodirus oiratianus*, and *Trichostrongylus vitrinus* were identified in few cases. Moreover, cestodes such as *Stilesia globipunctata* had a high prevalence rate and *Moniezia benedeni*, *Moniezia expansa*, were few. Some nematode genera recovered at necropsy during the present study have been recorded previously from *Camelus dromedarius* in some parts of Iran (Mirzayans and Halim, 1980; Radfar et al., 2006). In previous studies, helminths of *Camelostongylus mentulatus*, *Parabronema skrjabini*, *Haemonchus contortus*, *Haemonchus longistipes*, *Teladorsagia circumcincta*, *Marshallagia marshalli*, *Physoscephalus sexalatus*, *Ascarops strongyлина*, *Nematodirella longissimespiculata*, *Nematodirella cameli*, *Trichuris globulosa*, *Stilesia globipunctata*, and *Moniezia benedeni* were reported. Some nematode species like *Physoscephalus sexalatus* and *Ascarops strongyлина* recovered from abomasums in previous reports were not encountered in the present study. A possible explanation for this difference is that *Physoscephalus sexalatus* and *Ascarops strongyлина* are parasites of pigs and are considered to be accidental parasites of camel. Some genera of observed helminthes in this study were also reported from other regions (El Bihari and Kawasmeh, 1980; El Bihari, 1985; Abdul-Salam and Farah, 1988; Sharrif et al., 1997; Bekele, 2002). In the present study, *Nematodirella dromedarii*, *Trichostrongylus probolurus*, *Trichostrongylus colubriformis*, *Cooperia oncophora* and *Nematodirus oiratianus* were reported from Iranian dromedaries for the first time.

There is paucity of literature as helminthes infections of camels are generally regarded as less of a problem than those in other ruminants. However, gastrointestinal nematodes are known to undermine the overall health and productivity of camels. *Haemonchus longistipes* is the most pathogenic strongyle nematode of camels that may be associated with clinical disease and can be fatal. *Trichostrongylus* spp may contribute to the debilitating effects (Soulsby, 1982). The damage caused by these nematodes included abundant mucus secreting gastric cells, flattening of the mucosa, villous atrophy, haemorrhages and cellular infiltration, mainly of eosinophile. These lesions could reduce the productivity of the infected dromedary through disturbances of intestinal absorption (McGavin and Zackary, 2007).

In conclusion, the results of this study showed that strategic deworming of camel using broad-spectrum anthelmintics is necessary to increase the productivity of camels. Moreover, further epidemiological studies should be conducted in different seasons and regions of the country to provide more information about the seasonal dynamics of the gastrointestinal helminths of dromedary in Iran.

Acknowledgements

The authors are grateful to Dr. Azizzadeh for data analysis. We thank Mr. H. Eshrati for his technical assistance during data collection and Mr. M. Mohammad Nejad for taking pictures. This work was
supported by Ferdowsi University of Mashhad and grant No. 709.

References

