Exact and Numerical Solutions for Nonlinear Differential Equation of Jeffrey-Hamel Flow

R. Ellahi *

Department of Mathematics, Faculty of Basic and Applied Sciences IIUI, H-10 Sector, Islamabad, Pakistan.

Received 16 February 2011; accepted 5 May 2011.

Abstract
This paper looks at the analysis of Jeffrey Hamel flow. The investigation is mainly aimed to determine an exact analytic solution for a nonlinear problem. To the best of my knowledge, no such analysis is available in the literature which can describe the exact solution of the Jeffrey-Hamel flow. Besides this a comparative study between the numerical and exact solutions is presented. The effects of the various parameters intrinsic to the problems are analyzed and depicted via graphs.

Keywords: Nonlinear problem; Exact analytic solution; Numerical solution Jeffrey-Hamel flow.

1 Introduction

The flow between two planes which meet at an angle was first analyzed by Jeffrey [7] and Hamel [6]. Under suitable assumptions, the problem can be reduced to an ordinary differential equation. The incompressible viscous fluid flow through convergent–divergent channels is one of the most applicable cases in fluid mechanics, civil, environmental, mechanical and bio-mechanical engineering. A lot of information and references about Jeffrey Hamel flow can be found in the refs. [1, 4, 5, 13, 14]. Most scientific problems such as Jeffrey–Hamel flows are inherently of nonlinearity. Except a limited number of these problem, most of them do not have exact analytical solution. Therefore, these nonlinear equations have been solved either numerically [2, 15] or by perturbation methods [10, 11, 12]. Very little [3, 8, 9] has been yet said in the regime of exact solutions for nonlinear problems. The convergence of the solution and the large parameter are deficiencies of numerical and the perturbation methods respectively. We confine ourselves here to present a general exact analytical solution and the comparison of numerical solution as

*Email address: rahmatellahi@yahoo.com.
well. It is also worth mentioning that our exact analytical solution is not only valid for small but also for large values of emerging parameters.

2 Problem formulation

Consider the steady two-dimensional flow of an incompressible viscous fluid from a source or sink at the intersection between two rigid plane walls that the angle between them is 2α as shown in Fig. 1 given below:

![Fig. 1. Geometry of the problem.](image)

We assume that the velocity is only along radial direction and depend upon r and h, i.e., $V(u(r, h), 0)$ [10, 11]. Using continuity and the Navier–Stokes equations in polar coordinates we have

$$\frac{\rho \partial}{r \partial r} (ru(r, \theta)) = 0, \quad \frac{u(r, \theta) \partial u(r, \theta)}{\partial r} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \nu \left[\frac{\partial^2 u(r, \theta)}{\partial r^2} + \frac{1}{r} \frac{\partial u(r, \theta)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u(r, \theta)}{\partial \theta^2} - \frac{u(r, \theta)}{r^2} \right]$$

Equation (2.1) yields

$$f(\theta) \equiv ru(r, \theta).$$

Introducing

$$F(\eta) \equiv \frac{f(\theta)}{f_{\max}}, \eta = \frac{\theta}{\alpha}$$

and eliminating p in Eqs. (2.2) and (2.3), we obtain the following equation for the normalized function $F(\eta)$ as [11]

$$F''''(\eta) + 2\alpha Re F(\eta) F'(\eta) + 4\alpha^2 F''(\eta) = 0.$$

The subjected corresponding boundary conditions are

$$F(0) = 1, F'(0) = 0, F(1) = 0,$$

in which Re and α are the constants. The constant $\alpha > 0$ gives a divergent channel and for convergent channel the condition $\alpha < 0$ holds.
3 Exact solution

A first integral of equation (2.5) is

\[F'' + \alpha Re F'^2 + 4\alpha^2 F = c_1, \tag{3.7} \]

where \(c_1 \) is an arbitrary constant. Equation (3.7) has the translational symmetry in \(\eta \) and its order can be reduced as

\[\frac{1}{2} \frac{dF'^2}{dF} + \alpha Re F'^2 + 4\alpha^2 F = c_1. \tag{3.8} \]

Hence we have

\[F' = \pm \sqrt{2c_1 F - \frac{2}{3} \alpha Re F^3 - 4\alpha^2 E^2 + 2c_2}, \tag{3.9} \]

where \(c_2 \) is a further constant. The boundary conditions ((2.6)b,c) then require that

\[c_1 + c_2 = \frac{1}{3} \alpha Re + 2\alpha^2. \tag{3.10} \]

Since we want \(F' > 0 \), we omit the negative sign in (3.9). Thus

\[\int_{1}^{F} \frac{dE}{\sqrt{2c_1 E - \frac{2}{3} \alpha Re E^3 - 4\alpha^2 E^2 + \frac{2}{3} \alpha Re + 4\alpha^2 - 2c_1}} = \eta \tag{3.11} \]

subject to

\[F(1) = 0. \tag{3.12} \]

is an exact solution of Jeffery Hamel flow.

4 Numerical Solution

In this section we present the numerical solution of Jeffery Hamel flow by a so called method "Shooting method". To apply shooting method on Eqs. (2.5) and (2.6), we write our third order equation in three first order equations

\[F' (\eta) = v (\eta) \tag{4.13} \]

\[F'' (\eta) = u (\eta) = v' (\eta) \tag{4.14} \]

\[v' (\eta) = - (2\alpha Re F (\eta) v (\eta) + 4\alpha^2 v (\eta)) \tag{4.15} \]

\[F (0) = 1, v (0) = 0, F (1) = 0 \tag{4.16} \]

and missing condition is

\[F'' (0) = s \text{ or } u (0) = s \tag{4.17} \]

Equations (4.13)-(4.17) can be differentiated with respect to \(s \) to obtain

\[F''' (\eta) = V (\eta) \tag{4.18} \]

\[F''' (\eta) = U (\eta) = V' (\eta) \tag{4.19} \]
\[U' (\eta) = - \left(2\alpha Re \left(F' (\eta) v (\eta) + F (\eta) V (\eta) \right) + 4\alpha^2 V (\eta) \right) \] \hspace{1em} (4.20)

\[F' (0) = 0, V (0) = 0, U (0) = 1 \] \hspace{1em} (4.21)

where

\[F^n = \frac{\partial F}{\partial s}, V = \frac{\partial u}{\partial s}, U = \frac{\partial u}{\partial s} \] \hspace{1em} (4.22)

and \(s \) is an initial guess and change iteratively after each step by Newton’s formula

\[s^{n+1} = s^n - \frac{F (L, s^n) - A}{\frac{\partial F (L, s^n)}{\partial s}} \] \hspace{1em} (4.23)

or here \(A = 0, L = 1 \) and \(\partial F/\partial s = F' \) then the equation is

\[s^{n+1} = s^n - \frac{F (1, s^n)}{F' (1, s^n)} \] \hspace{1em} (4.24)

where \(s^{1} \) is taken to be \(-1\).

5 Graphs and comparison of results

In order to illustrate the influences of \(R_e \) and \(\alpha \) on \(F \), we have plotted the Figures 2 and 3 respectively. The obtained analytical solution is compared with numerical solution in Figures 4 and 5 respectively.

![Variation of alpha](image)

Fig. 2. Profiles of \(F \) for various values of \(\alpha \) when \(R_e \) is fixed.
Fig. 3. Profiles of F for various values of Re when α is fixed.

Fig. 4. Profiles of F for Jeffery Hamel flow in divergent channel.

Fig. 5. Profiles of F for Jeffery Hamel flow in convergent channel.
6 Concluding remarks

The present study contributes exact solution for the Jeffrey-Hamel flow. In addition, the numerical analysis is also presented for the Jeffrey-Hamel flow. As a result, the following observations are made.

- Increase in R_e results in the increase of boundary layer.
- An increase in α leads to an decrease in the boundary layer thickness.
- The constant $\alpha > 0$ and $\alpha < 0$ give a divergent and convergent channel respectively.
- It is also worth mentioning that our exact solutions are more general and such solutions have been presented first time in the literature.

Acknowledgment

RE also thanks Higher Education Commission of Pakistan (HEC) for NRPU and United State Education Foundation Pakistan to honored him by Fulbright Scholar Award for the year 2011-2012.

References

