A Sharp Inequality for Medians of L-Statistics in a Nonparametric Statistical Model

Ryszard Zieliński

Institute of Mathematics, Polish Academy of Science, Warszawa, Poland.
(R.Zieliński@impan.gov.pl)

Abstract. Sharp bounds for medians of L-statistics in the nonparametric statistical model with all continuous and strictly increasing distribution functions are given. As a corollary we conclude that L-statistics are very poor nonparametric quantile estimators.

1 Result

Let X_1, \ldots, X_n be a sample from a distribution $F \in \mathcal{F}$, where \mathcal{F} is the class of all continuous and strictly increasing distribution functions on their supports. Let $X_{1:n}, \ldots, X_{n:n}$ be the order statistics, let $T = \sum_{j=1}^{n} \lambda_j X_{j:n}; \lambda_j \geq 0, j = 1, 2, \ldots, n; \sum_{j=1}^{n} \lambda_j = 1$, be a nontrivial L-statistic (at least two λ's are positive). Let $S = S(X_1, \ldots, X_n)$ be any function of observations X_1, \ldots, X_n and let $Med(F, S)$ denote a median (of the distribution) of S if the sample comes from the distribution F. Our primary interest are functions of the form $S(\cdot) = F(T(\cdot))$.

Key words and phrases: Harrell-Davis estimator, Kaigh-Cheng estimator, L-statistics, quantiles, quantile estimators.
Theorem 1.1. If $T = \sum_{j=k}^{m} \lambda_j X_{j:n}$ is an L-statistic such that $\lambda_k > 0$, $\lambda_m > 0$, $k < m$, and $\lambda_k + \lambda_{k+1} + \ldots + \lambda_m = 1$, then

\[(*) \quad m(U_{k:n}) \leq Med(F, F(T)) \leq m(U_{m:n}),\]

where $m(U_{k:n})$ and $m(U_{m:n})$ are medians of order statistics $U_{k:n}$ and $U_{m:n}$ from a sample of size n from the uniform $U(0, 1)$ parent distribution. The bounds are sharp in the sense that for every $\varepsilon > 0$ there exists $F \in \mathcal{F}$ such that $\text{Med}(F, F(T)) > m(U_{m:n}) - \varepsilon$ and for every $\eta > 0$ there exists $G \in \mathcal{F}$ such that $\text{Med}(G, G(T)) < m(U_{k:n}) + \eta$.

Proof. The first statement follows easily from the fact that $X_{k:n} < T < X_{m:n}$ and hence for every $F \in \mathcal{F}$ we have $U_{k:n} = F(X_{k:n}) < F(T) < F(X_{m:n}) = U_{m:n}$. To prove the second part of the theorem it is enough to construct families of distributions F_α, $\alpha > 0$, and G_α, $\alpha > 0$, such that $\text{Med}(F_\alpha, F_\alpha(T)) \to m(U_{m:n})$ and $\text{Med}(G_\alpha, G_\alpha(T)) \to m(U_{k:n})$, as $\alpha \to 0$.

Consider the family of power distributions $F_\alpha(x) = x^\alpha$, $0 < x < 1$, $\alpha > 0$. Then $X_{j:n} = F_\alpha^{-1}(U_{j:n}) = U_{j:n}^{1/\alpha}$ and

\[F_\alpha(T) = \left(\lambda_k U_{k:n}^{1/\alpha} + \lambda_{k+1} U_{k+1:n}^{1/\alpha} + \ldots + \lambda_{m-1} U_{m-1:n}^{1/\alpha} + \lambda_m U_{m:n}^{1/\alpha}\right)^\alpha\]
\[= U_{m:n} \left[\lambda_k \left(U_{k:n}/U_{m:n}\right)^{1/\alpha} + \lambda_{k+1} \left(U_{k+1:n}/U_{m:n}\right)^{1/\alpha} + \ldots + \lambda_{m-1} \left(U_{m-1:n}/U_{m:n}\right)^{1/\alpha} + \lambda_m\right]^\alpha\]

If $\alpha \to 0$ then $F_\alpha(T) \to U_{m:n}$ and $\text{Med}(F_\alpha, F_\alpha(T)) \to m(U_{m:n})$.

Now consider the family G_α with $G_\alpha(x) = 1 - (1 - x)^\alpha$; in full analogy to the above we conclude that then $G_\alpha(T) \to U_{k:n}$ and $\text{Med}(G_\alpha, G_\alpha(T)) \to m(U_{k:n})$ as $\alpha \to 0$. \(\square\)

Corollary 1.1. If an L-statistic $T = \sum_{j=k}^{m} \lambda_j X_{j:n}$, $\lambda_k > 0$, $\lambda_m > 0$, $\lambda_k + \lambda_{k+1} + \ldots + \lambda_m = 1$, $k < m$, and $\lambda_j = \lambda_j(q)$, $j = k, \ldots, m$, is considered as a nonparametric estimator of the q-th quantile $x_q(F) = F^{-1}(q)$ of an unknown distribution $F \in \mathcal{F}$, then the error of estimation may be arbitrarily large in the sense that for every $C > 0$ there exists a distribution $F \in \mathcal{F}$ such that $|\text{Med}(F, T) - x_q(F)| > C$.

Proof. Suppose that $q < m(U_{m:n})$. The case that $q > m(U_{k:n})$ can be considered in full analogy.
Choose \(\varepsilon > 0 \) such that \(m(U_{m:n}) - \varepsilon > q \). By the Theorem there exists a distribution \(F \in \mathcal{F} \) such that \(\text{Med}(F,F(T)) > m(U_{m:n}) - \varepsilon > q \). By the obvious equality that states that \(\text{Med}(F,F(T)) = F(\text{Med}(F,T)) \) we obtain that \(\text{Med}(F,T) - x_q(F) > 0 \). For an \(\sigma > 0 \) consider the distribution \(F_{\sigma} \in \mathcal{F} \) defined by the formula \(F_{\sigma}(x) = F(x/\sigma) \). Then \(x_q(F_{\sigma}) = \sigma \cdot x_q(F) \) and, due to the fact that \(T \) is scale equivariant, \(\text{Med}(F_{\sigma},T) = \sigma \cdot \text{Med}(F,T) \). Hence \(\text{Med}(F_{\sigma},T) - x_q(F_{\sigma}) = \sigma \cdot (\text{Med}(F,T) - x_q(F)) \) which by a suitable choice of \(\sigma > 1 \) may be arbitrarily large.

\[\square \]

2 Numerical illustrations (simulations)

To demonstrate that \(L \)-statistics may produce very large errors in estimating quantiles in the nonparametric model \(\mathcal{F} \) with all continuous and strictly increasing distribution functions we decided to present the problem of estimating the median of an unknown \(F \in \mathcal{F} \) with the following well known estimators:

- **Davis and Steinberg (1986)**
 \[X_{(n+1)/2:n}, \quad \text{if } n \text{ is odd}; \quad \left(X_{n/2:n} + X_{n/2+1:n} \right)/2, \quad \text{if } n \text{ is even}, \]

- **Harrell and Davis (1982)**
 \[HD = \frac{n!}{\left((n-1)!\right)^2} \sum_{j=1}^{n} \left[\int_{(j-1)/n}^{j/n} [u(1-u)]^{(n-1)/2} du \right] X_{j:n}, \]

- **Kaigh and Cheng (1991) for \(n \) odd**
 \[KC = \frac{1}{\binom{2n-1}{n}} \sum_{j=1}^{n} \left(\frac{n-3}{2} + j \right) \left(\frac{3n-1}{2} - j \right) X_{j:n}. \]

As the distributions for studying our problem we have chosen

- **Pareto with cdf**
 \[1 - \frac{1}{x^\alpha}, \quad x > 1, \quad \text{heavy tails, no moments of order } k \geq \alpha, \]

- **Power (special case of Beta) with cdf**
 \[x^\alpha, \quad x \in (0,1), \quad \text{no tails, all moments}, \]
Exponential with cdf

\[1 - \exp\{-\alpha x\}, \quad x > 0, \quad \text{very regular}, \]

all distributions for \(\alpha = 1/2, 1/4, \) and \(1/8. \)

Results of our numerical investigations for samples of size \(n = 9 \)
(Harrell-Davis and Kaigh-Cheng) or for samples of size \(n = 10 \)
(Davis-Steinberg statistic \((X_{5:10} + X_{6:10})/2 \)) are presented in the Table below. The number of simulated samples, and consequently the number
of simulated values of the estimator under consideration, was
\(N = 9,999, \) and the median from the sample of size \(N = 9,999 \)
has been taken as an estimator of the median of the distribution of the
estimator under consideration. Observe that \(m(U_{n,n}) - m(U_{1:n}) \)
increases with \(n \) so that errors of estimators with \(k = 1 \) and \(m = n \)
(e.g. HD and KC) increase with \(n.\)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Median</th>
<th>HD</th>
<th>KC</th>
<th>(X_{5:10} + X_{6:10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pareto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha = 1/2)</td>
<td>4</td>
<td>7.72</td>
<td>13.71</td>
<td>4.13</td>
</tr>
<tr>
<td>(\alpha = 1/4)</td>
<td>16</td>
<td>255</td>
<td>1107</td>
<td>18.45</td>
</tr>
<tr>
<td>(\alpha = 1/8)</td>
<td>256</td>
<td>3.3 \times 10^6</td>
<td>2.8 \times 10^7</td>
<td>383</td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha = 1/2)</td>
<td>0.25</td>
<td>0.2780</td>
<td>0.2919</td>
<td>0.2535</td>
</tr>
<tr>
<td>(\alpha = 1/4)</td>
<td>0.0625</td>
<td>0.1055</td>
<td>0.1286</td>
<td>0.0692</td>
</tr>
<tr>
<td>(\alpha = 1/8)</td>
<td>0.0039</td>
<td>0.0241</td>
<td>0.0432</td>
<td>0.0053</td>
</tr>
<tr>
<td>Exponential</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha = 1/2)</td>
<td>1.3863</td>
<td>1.5138</td>
<td>1.6235</td>
<td>1.4079</td>
</tr>
<tr>
<td>(\alpha = 1/4)</td>
<td>2.7726</td>
<td>3.0571</td>
<td>3.2731</td>
<td>2.8036</td>
</tr>
<tr>
<td>(\alpha = 1/8)</td>
<td>5.5452</td>
<td>6.0595</td>
<td>6.4897</td>
<td>5.6143</td>
</tr>
</tbody>
</table>

3 A remark

A reason for the bad behavior of nontrivial \(L\)-statistics as quantile
estimators is that they are not equivariant under monotonic trans-
formation of data while the class \mathcal{F} of all continuous and strictly increasing distribution functions allows such transformations. In some parametric families of distributions L-statistics may perform excellently. The problem is discussed thoroughly in a Technical Report (Zieliński 2005).

Acknowledgment

The author wish to express his gratitude to referees for their helpful comments which improved the presentation of the paper, especially the proof of Corollary 1.1.

References

