Optimal Control of Nonlinear Systems Using the Shifted Legendre Polynomials

Rahman Hajmohammadi¹, Mohammad Ali Vali², Mahmoud Samavat³
1- Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran. Email: hajmohammadi64@gmail.com (Corresponding author)
2- Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran. Email: mvali@mail.uk.ac.ir
3- Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran. Email: msamavat@mail.uk.ac.ir

Received: December 2013 Revised: March 2014 Accepted: May 2014

Abstract
A numerical technique based on Legendre Polynomials for finding the optimal control of nonlinear systems with quadratic performance index is presented. An operational matrix of integration and product matrix are introduced and are used to reduce the nonlinear differential equations for the solution of nonlinear algebraic equations. The optimal solution from two classes of first and second order nonlinear systems is considered. In the case of second-order nonlinear systems, a new approach is introduced to find the optimal solution. In both cases, numerical examples are given and compared with the Taylor polynomials to confirm the accuracy of the proposed method.

Keywords: Non-linear systems; Legendre Polynomials; Optimal Control; Numerical Methods

1. INTRODUCTION
Most of the systems have nonlinear dynamics. So, the study of these nonlinear systems are very important. Hence, many researchers and designers have showed an active interest in the development and applications of nonlinear systems [1-3].

Orthogonal functions and polynomial series have received considerable attention in dealing with various problems of dynamical systems. Examples are the use of the Walsh functions (Chen Shih 1978) [4], the block-pulse functions (Maleknejad and Shahrezaee 2005, Wang and Li 2009) [5,6], the Chebyshev polynomials (H. Jaddu and E. Shimemura 1973) [7], the Taylor series (Mouroutsos and Sparis 1985, Gulsu and Sezer 2006, S. Yalcinbas 2002) [8-10], the Fourier series (M.L. Nagurka, V. Yen 1990, Ardekani and Keyhani 1989, Ardekani, Samavat and Rahmani 1991, Samavat and Rashidi 1995, Ebrahimi, Samavat, Vali and Gharavisi 2007) [11-15]. The main characteristic of the technique is that it reduces these problems to those of solving a system of algebraic equations; thus it greatly simplifies the problem.

In this paper, we use the Legendre Polynomials to find the optimal control of nonlinear systems. For the first time in this paper, the optimal control of a particular class of second-order nonlinear systems using a new approach has been proposed. By this numerical technique, a difficult problem is reduced to the straightforward nonlinear algebraic equations which can be solved by using a digital computer. Numerical examples are given to show the accuracy of the technique.

2. PROPERTIES OF LEGENDER POLYNOMIALS
2.1. Legendre Polynomials
The shifted Legendre polynomials, $P_n(t)$, where $0 \leq t \leq t_f$ are obtained from [16],

$$P_{n+1}(t) = \left(\frac{2n+1}{n+1} \right) \left(\frac{2t}{t_f} - 1 \right) P_n(t) - \left(\frac{n}{n+1} \right) P_{n-1}(t)$$

$$n = 1, 2, 3, ...$$

Where

$$P_0(t) = 1, \quad P_1(t) = \frac{2t}{t_f} - 1$$

The orthogonal property is given by

$$\int_0^{t_f} P_i(t) P_j(t) dt = \begin{cases} 0, & i \neq j \\ \left(\frac{t_f}{2(t_f+1)} \right), & i = j \end{cases}$$

2.2. Function Approximation
A function $f(t) \in L^2[0,t_f]$ can be approximated as:
Majlesi Journal of Electrical Engineering

\[f(t) = \sum_{i=0}^{\infty} f_i P_i(t), \]
In practice we only consider a finite number of terms, that is

\[f(t) = \sum_{i=0}^{m-1} f_i P_i(t), \]

The shifted Legendre polynomial \(f_i \) can be obtained by using

\[f_i = \frac{2i+1}{i} \int_{-1}^{1} f(t) P_i(t) \, dt \]

Equation (5) can be written in a matrix form as:

\[f(t) = F^T P(t) \]

Or

\[f(t) = P(t)^T F \]

Where \(F \) and \(P(t) \) are \(m \times 1 \) matrices which are given by:

\[F^T = \begin{bmatrix} f_0 & f_1 & f_2 & \cdots & f_{m-1} \end{bmatrix} \]

\[P(t) = \begin{bmatrix} P_0 & P_1 & P_2 & \cdots & P_{m-1} \end{bmatrix}^T \]

2.3 The Operational Matrix of Integration

Integration of the vector \(P(t) \) defined in Eq. (9) can be written as:

\[\int_0^t P(s) \, ds = H_{m \times m} P(t)_{m \times 1}, \]

By using Eqs.(3) and (7) we have :

\[\int_0^t f(s) \, ds = \int_0^t f^T P(s) \, ds = \int_0^t f^T H P(t) \]

By using Eqs.(7) and (10) we have :

\[\int_0^t f(s) \, ds = \int_0^t P(s)^T F \, ds = P(t)^T H^T F \]

Where the matrix \(H \) is obtained as follows[16]:

\[H = \begin{bmatrix} 1/2 & 1/2 & 0 & \cdots & 1/2(2m-3) \\ 1/6 & 1/6 & \cdots & 0 \\ -1/6 & 0 & \cdots & 0 \\ -1 & 1/2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -1/2(2m-1) & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \end{bmatrix} \]

2.4 The Product Operational Matrix

The product operational matrix \(\bar{F} \) can be defined as follows[17]:

\[P(t)P_i^T(t)F_i = \bar{F}_i P_i(t), \]

for \(i = 0,1,2, \ldots, m - 1 \). In fact

\[\bar{P}^T F \approx \bar{F} P, \]

To illustrate the calculation procedures, we choose \(m = 3 \). Thus, we have:

\[F = \begin{bmatrix} f_0 & f_1 & f_2 \end{bmatrix}^T \]

\[P(t) = \begin{bmatrix} P_0 & P_1 & P_2 \end{bmatrix}^T, \]

Where

\[P_0(t) = 1, \quad P_1(t) = 2t - 1, \quad P_2(t) = 6t^2 - 6t + 1 \]

Using equation (14), we get:

\[\begin{bmatrix} P_0^2 & P_0 P_1 & P_0 P_2 \\ P_1 P_0 & P_1^2 & P_1 P_2 \\ P_2 P_0 & P_2 P_1 & P_2^2 \end{bmatrix} = \bar{F} \begin{bmatrix} P_0 & P_1 & P_2 \end{bmatrix}^T \]

Finally, we have:

\[\bar{F} = \begin{bmatrix} f_0 & f_1 & f_2 \\ \frac{1}{2} f_0 & f_0 & \frac{2i+1}{i} \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \]

3. THE OPTIMAL CONTROL PROBLEM

The aim of this section is to explain how we can use the Legendre polynomials to find the optimal solution of first and second order nonlinear systems. In both cases the results are compared with the results of the Taylor polynomials.

3.1. The first-order systems:

Example 1:

Consider the optimal control problem of the first-order nonlinear system[12]:

\[2[y^2(t)]' + y(t) = u(t), \quad y(0) = 0.2, \]

\[0 \leq t \leq 1 \]

(18)

With respect to a quadratic performance index:

\[J = \int_0^1 [y^2(t) + u^2(t)] \, dt \]

(19)

Integrating Eq. (18) from zero to \(t \) and using Eqs. (6), (7), (10), (11), (12) and (14) we have:

\[\int_0^t y(s) \, ds = y(t) - y(0) = Y^T P(t) - Y_0^T P(t), \]

\[\int_0^t u(s) \, ds = \int_0^t U^T P(s) \, ds = U^T \int_0^t P(s) \, ds = U^T H P(t), \]

\[\int_0^t y(s) \, ds = \int_0^t y^T P(s) \, ds = Y^T \int_0^t P(s) \, ds = Y^T H P(t), \]
\[\int_0^t (y^2(s))' \, ds = y^2(t) - y^2(0) \]
\[= Y^T P(t) P^T(t) Y - Y_{20}^T P(t), \]
Finally
\[2[Y^T P(t) - (Y_0^T)^T P(t)] + [Y^T P(t) - Y_0^T P(t)] = U^T H P(t), \]
(20)
Eliminating \(P(t) \) in equation (20) gives:
\[2Y^T Y + Y^T - U^T H - 2(Y_0^T)^T Y = 0 \]
(21)
Where \(Y_0^T \) and \((Y_0^T)^T \) are \(1 \times m \) matrices which given by:
\[Y_0^T = [0.2 \ 0 \ 0 \ 0 \ldots \ldots \ldots] \]
\[(Y_0^T)^T = [0.04 \ 0 \ 0 \ldots \ldots \ldots] \]
For the performance index we have:
\[J = 10 \int_0^1 [y^2(t) + u^2(t)] \, dt \]
(22)
\[J = 10 \times Y^T L Y + 10 \times U^T L U \]
(23)
Where
\[L = \int_0^1 [P(t) P^T(t)] \, dt \]
(24)
We now minimize equation (23) related to the equation (21), by using the Lagrange multiplier technique we get:
\[J^* = J + \lambda \left[2Y^T Y + Y^T - U^T H - 2(Y_0^T)^T Y - Y_0^T \right]^T \]
(25)
Where \(\lambda \) is a \(1 \times m \) matrix as follows:
\[\lambda = [\lambda_0 \ \lambda_1 \ \lambda_2 \ \lambda_3 \ldots \ldots \ \lambda_{m-1}] \]
The necessary conditions for finding the minimum are:
\[\frac{\partial J}{\partial y_i} = 0, \quad \frac{\partial J}{\partial u_i} = 0 \quad i = 1, 2, \ldots, m - 1 \]
(26)
\[\frac{\partial J}{\partial \lambda} = 0 \]
(27)
By using this technique Eq. (25) turns into a set of nonlinear algebraic equations which can be solved using the Newton’s iterative method to obtain \(J^* \). The approximated values of \(J \) and \(y(0) \) in comparison with the Taylor polynomials are given in Table 1.

Table 1. Approximated values of \(J \) and \(y(0) \), using the proposed method in comparison with the Taylor polynomials for \(m=4, m=5 \) and \(m=6 \) for example 1

<table>
<thead>
<tr>
<th>(m)</th>
<th>Exact values of (y(0))</th>
<th>Approximated values of (y(0)) by the Taylor polynomials</th>
<th>Approximated values of (y(0)) by the proposed method</th>
<th>Approximated values of (J) by the Taylor polynomials</th>
<th>Approximated values of (J) by the proposed method</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.2</td>
<td>0.21312</td>
<td>0.21146</td>
<td>0.03954</td>
<td>0.03614</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>0.20862</td>
<td>0.20657</td>
<td>0.03910</td>
<td>0.03602</td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
<td>0.20345</td>
<td>0.20089</td>
<td>0.03881</td>
<td>0.03601</td>
</tr>
</tbody>
</table>

Example 2:
Consider the optimal control problem of a different first-order nonlinear system \[18\]:
\[y' = -y^2(t) + u(t), \quad y(0) = 10, \quad 0 \leq t \leq 1 \]
(28)
With respect to a quadratic performance index:
\[J = 0.5 \int_0^1 [y^2(t) + u^2(t)] \, dt \]
(29)
Integrating Eq. (28) from zero to \(t \) and using Eqs. (6), (7), (10), (11), (12) and (14) and eliminating \(P(t) \) we have:
\[Y^T - Y_0^T + Y^T \tilde{Y} = U^T \]
(30)
Using the Newton’s iterative method explained in example 1, the approximated values of \(J \) and \(y(0) \) and comparison with Taylor polynomials are given in Table 2.

Table 2. Approximated values of \(J \) and \(y(0) \), using the proposed method in comparison with the Taylor polynomials for \(m=4, m=5 \) and \(m=6 \) for example 2

<table>
<thead>
<tr>
<th>(m)</th>
<th>Exact values of (y(0))</th>
<th>Approximated values of (y(0)) by the Taylor polynomials</th>
<th>Approximated values of (y(0)) by the proposed method</th>
<th>Approximated values of (J) by the Taylor polynomials</th>
<th>Approximated values of (J) by the proposed method</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>10</td>
<td>10.1028</td>
<td>10.0245</td>
<td>4.93954</td>
<td>4.51236</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>10.0420</td>
<td>10.0126</td>
<td>4.64052</td>
<td>4.50828</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>10.0089</td>
<td>10.0098</td>
<td>4.60091</td>
<td>4.50726</td>
</tr>
</tbody>
</table>

3.2. The second order systems:

Example 3:
Consider the optimal controlling problem of the second-order nonlinear system \[12\]:

Table 1. Approximated values of \(J \) and \(y(0) \), using the proposed method in comparison with the Taylor polynomials for \(m=4, m=5 \) and \(m=6 \) for example 1

<table>
<thead>
<tr>
<th>(m)</th>
<th>Exact values of (y(0))</th>
<th>Approximated values of (y(0)) by the Taylor polynomials</th>
<th>Approximated values of (y(0)) by the proposed method</th>
<th>Approximated values of (J) by the Taylor polynomials</th>
<th>Approximated values of (J) by the proposed method</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.2</td>
<td>0.21312</td>
<td>0.21146</td>
<td>0.03954</td>
<td>0.03614</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>0.20862</td>
<td>0.20657</td>
<td>0.03910</td>
<td>0.03602</td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
<td>0.20345</td>
<td>0.20089</td>
<td>0.03881</td>
<td>0.03601</td>
</tr>
</tbody>
</table>

Example 2:
Consider the optimal control problem of a different first-order nonlinear system \[18\]:
\[y' = -y^2(t) + u(t), \quad y(0) = 10, \quad 0 \leq t \leq 1 \]
(28)
With respect to a quadratic performance index:
\[J = 0.5 \int_0^1 [y^2(t) + u^2(t)] \, dt \]
(29)
Integrating Eq. (28) from zero to \(t \) and using Eqs. (6), (7), (10), (11), (12) and (14) and eliminating \(P(t) \) we have:
\[Y^T - Y_0^T + Y^T \tilde{Y} = U^T \]
(30)
Using the Newton’s iterative method explained in example 1, the approximated values of \(J \) and \(y(0) \) and comparison with Taylor polynomials are given in Table 2.

Table 2. Approximated values of \(J \) and \(y(0) \), using the proposed method in comparison with the Taylor polynomials for \(m=4, m=5 \) and \(m=6 \) for example 2

<table>
<thead>
<tr>
<th>(m)</th>
<th>Exact values of (y(0))</th>
<th>Approximated values of (y(0)) by the Taylor polynomials</th>
<th>Approximated values of (y(0)) by the proposed method</th>
<th>Approximated values of (J) by the Taylor polynomials</th>
<th>Approximated values of (J) by the proposed method</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>10</td>
<td>10.1028</td>
<td>10.0245</td>
<td>4.93954</td>
<td>4.51236</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>10.0420</td>
<td>10.0126</td>
<td>4.64052</td>
<td>4.50828</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>10.0089</td>
<td>10.0098</td>
<td>4.60091</td>
<td>4.50726</td>
</tr>
</tbody>
</table>

3.2. The second order systems:

Example 3:
Consider the optimal controlling problem of the second-order nonlinear system \[12\]:

Now this gives us the minimum of J. The approximated values of J and $y(0)$ and comparing them with Taylor polynomials are given in Table 3.

<table>
<thead>
<tr>
<th>m</th>
<th>Exact values of $y(0)$</th>
<th>Approximated values of $y(0)$ by the Taylor polynomials</th>
<th>Approximated values of J by the proposed method</th>
<th>Approximated values of J by the Taylor polynomials</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.34721</td>
<td>0.32001</td>
<td>0.42432</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>0.33121</td>
<td>0.31456</td>
<td>0.40027</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>0.31011</td>
<td>0.30865</td>
<td>0.39925</td>
</tr>
</tbody>
</table>

4. CONCLUSION

In the proposed method, using the Legendre polynomials, the nonlinear differential equations are reduced into a set of nonlinear algebraic equations, which can be solved using a digital computer. Since the operational matrix of integration and the product matrix contain many zero entries, it gives computational advantages when compared with the other possible approximations. Numerical examples are given to show the accuracy and applicability of the technique. Results show that the Legendre polynomials have accurate approximate values than the Taylor polynomials. Finally, the method can be extended for the optimal control of nonlinear time within varying systems.

REFERENCES

