Seasonal zooplankton community variation in Karataş Lake, Turkey

Apaydın Yağcı, M.
Received: June 2012 Accepted: December 2012

Abstract
This study was carried out to determine seasonal variation and zooplankton community structure in Karataş Lake, Southern Turkey. Zooplankton samples were collected seasonally between 2002 and 2003 in two stations using a zooplankton net of 55-µm mesh size. A total of 42 taxa were identified, including 19 taxa (45.2 %) Rotifera, 16 taxa (38.1 %) Cladocera, and 7 taxa (16.7 %) Copepoda. Among them, Keratella quadrata, Asplanchna priodonta from Rotifera, Daphnia longispina, Ceriodaphnia quadrangula, Chydorus sphaericus, Coranatella rectangula from Cladocera, and Eudiaptomus drieschi, Eucyclops speratus from Copepoda were dominant species. Spring and autumn seasons were found to be the most similar by using Sorenson index value.

Keywords: Zooplankton, Community, Seasonal change, Karataş Lake

-Mediterranean Fisheries Research, Production, and Training Institute, Eğirdir Area-Isparta, Turkey
*Corresponding author’s email: meralyagci@gmail.com
Introduction

The abundance of organic matter of aquatic habitats depends completely on the food chain process. In the food chain of freshwater ecosystems, the first chain is Phytoplankton and the second chain is Zooplankton. It has been reported that zooplankton is the best bait in terms of natural foods in trout feeding (Başçınar and Çakmak, 2010). Cladocera and Copepoda have a crucial role in zooplanktonic organism groups which is the second chain of aquatic ecosystems. A considerable amount of Cladocera lives in freshwater; whereas, a very limited amount lives in brackish one. Cladoceran inhabits diverse habitats and are at times exposed to a great variety of harsh and extreme environmental conditions. Cyclopoid and Harpacticoid copepods are determinant as indicators in decision of trophic state (Geng et al., 2005; Sarma et al., 2005). Rotifer or wheel animalcules are one of the most interesting groups of freshwater invertebrates. Their size ranges between 45µm and about 2.5 mm, the most common length being 100-500 µm (Sládeček, 1983; Dumont, 2007). Phylum rotifera is divided into three classes: Monogononta, Bdelloidea, and Seisonidea. The largest group is the Monogononta, with about 1500 species, followed by the Bdelloidea, with about 350 species. Rotifera is an important component of freshwater zooplankton and is not only important food for many fishes but also used as an indicator of water quality (Geng et al., 2005).

In the study of 1972 and 1997 in Karataş Lake (Ongan et al., 1972; Gündüz, 1997), the lake’s cladocera species have been investigated, and in the study of 1990 and 1991 the lake’s rotifera species have been reported (Emir, 1990, 1991). In 1999, zooplankton fauna have been studied in research about the lake’s biological diversity, but very few zooplanktonic organisms have been reported in terms of number of species. In the studies carried out in the lake so far, the Cyclops sp. belonging to the copepoda group has been stated, but it is thought that there is a literature insufficiency about the copepoda fauna (Kazancı et al., 1999). The purpose of this study is to determine the seasonal variation of Karataş Lake’s zooplankton to contribute to zooplankton of that lake and especially to the copepoda and cladocera.
group, in terms of species and also to show the change of about 30 years of the zooplankton fauna of the Karataş Lake. In addition, areas of the world, to draw attention to the habitat of White-Headed Duck birds.

Materials and methods

Study Area

Karataş Lake, which is in the Lakes Region, is in the border of Burdur, in the northeastwards of Tefenni Plain. The coordinates of the lake are 37°21’36”-37°25’17”N, 29°57’11”-29°59’19”E with the altitude of 1050 m. The maximum area is 11.9 km² and the maximum depth is 2 m. The main source of the lake is Bozçay. It is used as irrigation source with dikes built. All around lake, especially the west side is covered with reddy. Creals agriculture is intense in the region (Yarar and Magnin, 1997). Lake Karataş contains important fish species, namely; *Cyprinus carpio* Linnaeus, 1758, *Scardinius erythropthalmus* (Linnaeus, 1758), *Sander lucioperca* (Linnaeus, 1758), *Knipowitschia caucasia* (Berg, 1916), *Aphanius anatoliae anatoliae* (Leidenfrost, 1912), *Capoeta capoeta bergamae* (Karaman, 1969) (Geldiay and Balık, 2002; Kır, 2005; Yeşen et al., 2006). Yarar and Magnin (1997) stated that, Karataş Lake was taken to the Wildlife Protection Area by the Turkish Government in 1995. According to Hughes et al. (2006), the White-Headed Duck (*Oxyura leucocephala*), whose wintering area is Karataş Lake, is in the list of RAMSAR, CBD, CITES, and BERN convention which have an international importance. Turkey has the largest wintering population of the White-Headed Duck of any range state, and also holds a major breeding population. The most important site in Turkey is Burdur Lake which often holds over 50% of the known world population during winter (Green and Hughes, 1996).

This study was carried out in 2002-2003. The samples were collected seasonally at two different stations in Karataş Lake (Fig. 1). Station 1 was at the middle southwest coasts; and Station 2 at the northeast coasts of the lake.

The zooplankton samples were collected using a standard plankton net (Hydrobios model 55 µm mesh size). Samples were preserved in 4% formaldehyde in 250 ml plastic bottles. Binocular biological research samples. In the rotifera species, the identification with the trophi; and in the cladocera and copepoda species the identification with the dissection were carried out. In the systematic identification of zooplankton samples Mann (1940), Muckle (1951), Negrea (1983), Korovchinsky (1992), Smirnov (1996) were used for Cladocera; Kiefer (1952-1955), Dussart (1967-1969), Kiefer and Fryer (1978), Alekseev et al. (2006) were used for Copepoda; Ruttner-Kolisko (1974), Koste (1978), Segers (1995) and Nogrady and Segers (2002) were used for Rotifera. Water temperature, pH, conductivity and dissolved oxygen concentrations were measured with a W.T.W. 340 I. Coordinates of the stations were identified with Magellan Sportrak.

In comparing the faunastic composition of zooplankton were used the Sorenson similarity index (S) and Jaccard index (CJ) (Hellawell, 1986).
S = 2C/A+B Where: “A” is the number of species present in one population, “B” is the number of species present in the other population, and “C” is the number of species present in both populations.

CJ=J/(a+b-J) Where: “a” is the number of species present in one population, “b” is the number of species present in the other population, and “J” is the number of species common to both populations.

Figure 1: Map of study area of Karataş Lake

Results
As a result of the qualitative determinations, 16 taxa belonging to 5 families from cladocera; 7 taxa belonging to 3 family from copepoda; 19 taxa belonging to 10 family from rotifera were identified. The identified species are as follows:

Phylum: Rotifera
Subclass: Monogononta
Order: Ploimia
Family: Branchionidae
Brachionus angularis Gosse, 1851
Keratella cochlearis (Gosse, 1851)
Keratella quadrata (O. F. Müller, 1786)
Keratella tropica (Apstein, 1907)
Notholca acuminata (Ehrenberg, 1832)
Notholca squamula (O. F. Müller, 1786)
Family: Mytilinidae
Mytilina sp.
Family: Lecanidae
Lecane bulla (Gosse, 1851)
Lecane luna (O. F. Müller, 1776)
Lecane sp.
Family: Trichotriidae

Family: Synchaetidae
Synchaeta pectinata Ehrenberg, 1832
Polyartha dolichoptera Idelson, 1925
Family: Asplanchnidae
Asplanchna priodonta Gosse, 1850
Order: Flosculariacea
Family: Testudinellidae
Testudinella patina (Hermann, 1783)
Family: Conochilidae
Conochilus dossuarius (Hudson, 1885)
Family: Hexarthridae
Hexarthra fennica (Levander, 1892)
Family: Filiniidae
Filinia terminalis (Plate, 1886)
Filinia longiseta (Ehrenberg, 1834)
The seasonal mean values in the study area, the surface water temperature in the lake ranged from 10.6 to 17.1 °C, pH from 8.51 to 8.53, DO from 3.3 to 7.7 mg/L and conductivity from 454 to 549μS/cm² were determined. When the distribution of species according to stations in all seasons is examined from the Table 1, it is realized that there are 30 species in the Station 1 and 38 species in Station 2. Moreover it is identified that the greatest number of species is observed in summer (26 taxa) and autumn (23 taxa) and the least number of species is observed in spring (15 taxa) (Table 1). Summer, with 26 species, was the seasonal when the highest number of species was observed; Spring, with 17 species, was the seasonal with the lowest number of species (Fig. 2). The lower value of Sorenson index (27%) and Jaccard index (15 %) were recorded in summer zooplankton and higher value Sorenson index (79 %) and Jaccard index (65%) were recorded in autumn zooplankton (Table 2).
Figure 2: Seasonal changes in the number of zooplankton species in Karataş Lake

Table 1: Seasonal distributions of zooplankton species in Karataş Lake

<table>
<thead>
<tr>
<th>Species</th>
<th>2002 Spring</th>
<th>2002 Summer</th>
<th>2002 Autumn</th>
<th>2003 Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLADOCERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphanosoma brachyurum</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Diaphanosoma lacustris</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Daphnia magna</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Daphnia longispina</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ceriodaphnia quadrangula</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Moina brachiata</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Bosmina longirostris</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pleuroxus aduncus</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Pleuroxus trigonellus</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Disparalona rostrata</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Chydorus sphaericus</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Alona costata</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Coranatella rectangula</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Acroperus harpae</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Graptoleberis testudinaria</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>COPEPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthodiaptomus denticornis</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Eudiaptomus drieschi</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Arctodiaptomus bacilifer</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Eucyclops speratus</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Paracyclops fimbriatus</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cyclops abyssorum</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Canthocamptus staphylinus</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ROTIFERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Brachionus angularis*
Keratella cochlearis*
Keratella quadrata
Keratella tropica
Notholca acuminata*
Notholca squamula*
Mytilina sp.*
Trichotria tetractis*
Lecane luna*
Lecane bulla*
Lecane sp.*
Synchaeta pectinata*
Polyarthra dolichoptera*
Asplanchna priodonta*
Testudinella patina*
Conochilus dossuarius*
Hexarthra fennica*
Filinia longiseta*
Filinia terminalis*

*: Species marked by an asterisk are new records for Karataş Lake

Table 2: Sorenson Similarity Index for zooplankton species present in Karataş Lake

<table>
<thead>
<tr>
<th>Zooplankton</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>75 %</td>
<td>27 %</td>
<td>79 %</td>
<td>59 %</td>
</tr>
<tr>
<td>CJ</td>
<td>60 %</td>
<td>15 %</td>
<td>65 %</td>
<td>42 %</td>
</tr>
</tbody>
</table>

Discussion

In all seasons, dominant species in the lake were observed as Daphnia longispina, Chydorus sphaericus, and Coranatella rectangula belonging to Cladocera and Eucyclops speratus, Eudiaptomus drieschi belonging to Copepoda. Disparalona rostrata, Moina brachiata, Acroperus harpae and Graptoleberis testudinaria from cladocera were observed in summer, autumn and winter, respectively. Paracyclops fimbriatus from copepoda was observed only in spring. In this study, especially in summer, determined Trichotria tetractis, Lecane luna, Lecane bulla, Lecane sp., Polyarthra dolichoptera and Mytilina sp. were rotifera. Keratella tropica and Testudinella patina were observed in autumn only. Notholca squamula and N. acuminata were observed in spring only. Filinia terminalis was found in winter only. The lower value of Sorenson’s index for total zooplankton composition reveal the change in community structure (Table 2). In Lake Karataş total zooplankton composition has significantly changed compared to earlier study. The low value of Sorenson index (27 %) and Jaccard index (15 %) in Karataş Lake reveals that the some change in the rotifera composition due to the disappearance of 3 species (Table 1). Polyarthra dolichoptera, Testudinella patina and Filinia terminalis group of rotifera species were not found in summer zooplankton.
In this study, the zooplankton fauna contained 42 taxa, among them 19 were from rotifer, 7 from copepod and 16 from cladocera. In the studies of Karataş Lake in 1990 and 1991 (Emir, 1990, 1991), 10 rotifer species (Filinia longiseta, Brachionus urceolarius, Trichotria tetractis, Lecane luna, Polyaarthra vulgaris, P. dolicooptera, P. remata); and in the study of 1999 (Kazanci et al., 1999), 2 rotifer species (Keratella quadrata and Filinia terminalis) have been presented. From these species, 5 species (Brachionus urceolarius, Polyaarthra vulgaris, P. remata, Lophocharis salpina and Ascomorpha saltans) were not observed in this investigation. Macrothrix laticornis, from cladocera found by Ongan et al. (1972) and Ceriodaphnia dubia, C. reticulata, C. pulchella, Biaipertura affinis, Macrothrix laticornis from cladocera found by Gündüz (1997) were not determined in this study. Zooplankton fauna for Karataş Lake, Moina brachiata, Pleuroxus trigonellus, P. aduncus, P. sp., Disparalona rostrata, Coranatella rectangula, Alona costata, Acroperus harpae, Graptoleberis testudinaria from cladocera; Keratella cochlearis, Keratella tropica, Brachionus angularis, Notholca acuminata, Notholca squamula, Lecane bulla, Lecane sp., Hexarthra fennica, Synchaeta pectinata, Asplanchna priodonta, Conochilus dossuarius, Mytilina sp., from rotifera were new records for the region.

In previous studies carried for copepoda, no records were determined except Cylops sp. (Kazanci et al. (1999). Acanthodiaptomus denticornis, Eudiaptomus drieschi, Arctodiaptomus bacillifer, Eucyclops speratus, Cyclops abyssorum, Paracyclops fimbriatus, and Canthocamptus staphylinus from copepoda were identified in our study. Karataş Lake zooplankton species are species that contribute to the fauna of copepoda. Paracyclops fimbriatus from Cyclopoida was observed in spring only in Station 2. Similarly, Canthocamptus staphylinus from Harpacticoida was observed in spring only in both first and second stations. In addition, very few of Canthocamptus staphylinus and Paracyclops fimbriatus were found in summer in the Station 1. These species are originally benthic forms and encountered in areas where macrophyta vegetation are dense. They are rarely found in pelagic zone. Depending on this fact, finding macrophyta vegetation in the stations where these species live, having low level of water in the stations and observing limited number of species in sampling may be evidence that these species are accidentally come into the plankton net. Sharma and Kotwal (2011) reported that Chydoms sphaericus, Coranatella rectangula and Moina brachiata species distributed in the freshwater the range of pH 7.1–8.3. Some species identified in this study were determined living in pH 8.51–8.53, which supports the pH values in other literature studies (Sharma and Kotwal, 2011). Filinia terminalis, a kind of cold stenotherm and outspread between 4–19°C, is generally observed in winter (Nogrady and Segers, 2002). During the winter, Filinia terminalis species were observed in both of the stations. According to Ruttner - Kolisko (1974) Brachionus species prefer especially to hot waters. In our study, Brachionus species are encountered not only in summer
but in autumn as well. Lake Karataş is evaluated as ultra-oligotrophic and eutrophic in the studies carried out thus far. (Kazancı et al., 1999). Brachionus angularis has been designated as indicators of heavy pollution (eutrophic). Lecane bulla is indicator of fresh and clean waters (oligotrophic) while a variety of rotifers including Brachionus, Keratella species are inhabitants of moderately clean (mesotrophic) waters (Saksena, 1986). Generally, the indicators of eutrophic lakes are Filinia longiseta, Keratella cochlearis, Keratella quadrata (Geng et al., 2005).

Studies in literature revealed the fact that Cyclops abyssorum is the indicator of oligotrophic water, Bosmina longirostris and Chyadorus sphaericus are indicators of oligotrophic-eutrophic waters, Diaphanosoma brachyurum and Diaphanosoma sp., are the indicators of mesotrophic-eutrophic waters, Daphnia longispina is the indicator of eutrophic waters, Graptoleberis testudinaria is the indicator of distrophic waters, Canthocamptus staphylinus is the indicator of eutrophic waters (Ustaoğlu, 1989; Makarewicz, 1993; Hämäläinen and Karjalainen, 1994). In conclusion, in terms of zooplankton Lake Karataş had an oligotrophic-eutrophic character and was, thus vulnerable to eutrophication. Karataş Lake and its surrounding areas are among the wetlands that ought to be protected because of both its richness in terms of species and its aesthetic beauty. Zooplankton, which is very important for fish, have an important place in the food chain. Therefore, it is necessary to reserve the biological abundance of the lakes. This study is expected to contribute to the knowledge of zooplankton fauna of the lake and of Turkey (particularly to cladocera and copepoda fauna) and provide a resource for future studies in the Karataş Lake.

Acknowledgements
I would like to thank the Mediterranean Fisheries Research Production and Education Institute and its technical staff; Senior Aquaculture Engineer Vedat Yeğen, Aquaculture Engineer Rahmi Uysal and Aquaculture Engineer Abdulkadir Yağcı for their support during field studies. It is a pleasure to thank to Ege University Faculty of Fisheries Professor M. Ruşen Ustaoğlu for his investigation of my article.

References

Başçınar, N. S. and Çakmak, E., 2010. Karadeniz alabalığı (Salmo trutta labrax
Pallas, 1811) larvalarında canlı ve granül yem kullanımı: Büyüme performansının karşılaştırılması. The Journal of the Faculty of Veterinary Medicine, University of Kafkas, 16 (6), 915-920.

Apaydin Yağcı, Seasonal zooplankton community variation in Karataş Lake, Turkey

Hidrobiyoloji Araştırma Enstitüsü Yayınları, 12, 1-19.

