Inference on the Ratio of Variances of Two Independent Populations

M. R. Mahmoudi*
Shiraz University

M. Mahmoudi
Shiraz University

Abstract. The asymptotic distribution for the ratio of sample variances in two independent populations is established. The presented method can be used to derive the asymptotic confidence interval and hypothesis testing for the ratio of population variances. The performance of the new interval is comparable with similar confidence intervals in the large sample cases. Then the simulation study is provided to compare our confidence interval with F-statistic method. The proposed confidence set has a good coverage probability with a shorter length.

AMS Subject Classification: 62F03; 62F05; 62F12; 62H20
Keywords and Phrases: Cramer's theorem, ratio of variances, Slutsky's theorem

1. Introduction

It is of interest to make inference about the ratio of variances of two independent populations. The classical tests for comparing variances of k variables were designed for independent variables. These are Bartlett's test, Cochran's test and Hartley's test, all of which were found to be sensitive to departures from normality (Winer, 1971). As an alternative, Box (1953) suggested a test which is fairly robust with respect to departures from normality. This test, also discussed by Scheffe (1959), is

*Corresponding author
based on an analysis of variance of the logarithms of the variances. When
the variance of a group of items before a treatment is to be compared
with the variance of the same group after treatment, the independence
is quite apparently not met. As an example, Cochran considered a char-
acteristic was measured both before and after aging. It was of interest to
determine whether the variability is changed by aging. When the vari-
ables are known to be correlated, Pitman (1939) and Morgan (1939)
considered the comparison of variances for bivariate normal variables.
The comparison of variances for \(k > 2 \) jointly normal correlated variables
was discussed by Han (1968, 1969). Choi and Wette (1972) suggested a
method for testing the equality of variances of several correlated normal
variables when the covariances are unknown. Levy (1976) suggested a
test for \(k > 2 \) jointly normal correlated variables without any restric-
tive assumptions on the correlation structure. Cohen (1986) considered
the comparison of variances for correlated variables. Cacoullos (2001),
using the F-representation of \(t \), showed the Pitman-Morgan t-test for ho-
moscedasticity under a bivariate normal setup is equivalent to an F-test
on \(n-2 \) and \(n-2 \) degrees of freedom. This yields an F-test of independence
under normality. Brownie and Boos (2004) reviewed the difference be-
tween asymptotic properties of normal-theory tests for variances and
for means and described several specific methods for the two and \(k \)-
samples problems. Ojbasic and Tomovich (2007) suggested confidence
intervals for the population variance and the difference invariances of
two populations based on the ordinary \(t \)-statistics combined with the
bootstrap method. Guajardo and Lubiano (2012), on the basis of Leve-
en’s classical procedure, developed a test for the equality of variances
of \(k \) fuzzy-valued random elements. Bhandary and Dai (2013) considered
the problem of homogeneity of variance in Randomized Complete Block
Design (RCBD) and developed a new test for the equality of variances
in RCBD.

In this work, the asymptotic distribution for the ratio of sample vari-
ances is presented. It will be applied to construct confidence interval
and perform test statistics. This method is the most efficient way in
comparison with other method, specially when sample size is large.
2. Large Samples Inference

Let X and Y be two random variables with means μ_X and μ_Y, variances σ_X^2 and σ_Y^2, Third moments μ_{3X} and μ_{3Y}, and finite fourth moments μ_{4X} and μ_{4Y}, respectively. Also assume that (X, Y) has the finite central product moments $\mu_{ij} = E[(X - \mu_X)^i(Y - \mu_Y)^j]; (i, j) \in \{(1, 1), (1, 3), (3, 1), (2, 2)\}$. We are interested in inference about the parameter $\sigma = \frac{\sigma_X^2}{\sigma_Y^2}$. Since $S_X^2 = \overline{X}^2 - \overline{X}^2$ and $S_Y^2 = \overline{Y}^2 - \overline{Y}^2$ are consistent estimators for σ_X^2 and σ_Y^2, $S = \frac{S_X^2}{S_Y^2}$ seems to be a reasonable estimator for the parameter σ. There is no loss in assuming $m = n$. Also, since the variance doesn’t depend on locations, we may as well assume $\mu_X = \mu_Y = 0$ (otherwise work with $X - \mu_X$ and $Y - \mu_Y$).

In the following theorem that is the main theorem of this article, we will give the asymptotic distribution of S.

Theorem 2.1. Under the above assumptions,

$$\sqrt{n} (S - \sigma) \xrightarrow{L} N(0, \gamma^2) \quad \text{as } n \to \infty,$$

where

$$\gamma^2 = \frac{\mu_{4Y} \sigma_Y^4 - 2 \mu_{2Y} \sigma_Y^2 + \mu_{4X} \mu_{4Y} \sigma_X^4 - \mu_{2X} \mu_{4Y} \sigma_Y^4 - \mu_{4X} \mu_{4Y} \sigma_X^4}{\sigma_X^4}.$$

Proof. Define $M_n = (X, Y, \overline{X}^2, \overline{Y}^2)^T$. Then by central limit theorem,

$$\sqrt{n} (M_n - \mu) \xrightarrow{L} N(0, \Sigma),$$

where $\mu = (0, 0, \sigma_X^2, \sigma_Y^2)^T$ and

$$\Sigma = \begin{bmatrix} \sigma_X^2 & \sigma_{11} & \sigma_{12} \\ \sigma_{11} & \mu_X^2 & \mu_X \mu_Y \\ \sigma_{12} & \mu_X \mu_Y & \mu_Y^2 \\ \sigma_{11} & \mu_X \mu_Y & \mu_Y^2 \end{bmatrix}.$$

Now, we apply Cramer’s theorem (see Ferguson (1996)) for function

$$g(M_n) = (\overline{X}^2 - \overline{X}^2)/(\overline{Y}^2 - \overline{Y}^2).$$
We define \(g : \mathbb{R}^4 \to \mathbb{R} \) as \(g(x_1, x_2, x_3, x_4) = \frac{x_3 - x_1^2}{x_4 - x_2^2} \). Then the gradient function with respect to \(g \) is

\[
\nabla g(x_1, x_2, x_3, x_4) = \left(\frac{-2x_1}{x_4 - x_2^2}, \frac{2x_2(x_3 - x_1^2)}{(x_4 - x_2^2)^2}, \frac{1}{x_4 - x_2^2}, \frac{x_1^2 - x_3}{(x_4 - x_2^2)^2} \right).
\]

Also \(\nabla g(0, 0, \sigma_X^2, \sigma_Y^2) \) \(\hat{\theta}(\nabla g(0, 0, \sigma_X^2, \sigma_Y^2))^T = \gamma^2 \).

Since \(\nabla g \) is continuous in neighborhood of \((0, 0, \sigma_X^2, \sigma_Y^2)\), therefore, by Cramer’s rule we have

\[
\sqrt{n} \left(g(X, Y, \bar{X}^2, \bar{Y}^2) - g(0, 0, \sigma_X^2, \sigma_Y^2) \right) = \sqrt{n} (S - \sigma) \xrightarrow{\mathcal{L}} N(0, \gamma^2) \quad \text{as } n \to \infty. \quad \Box
\]

Corollary 2.2. If \(X \) and \(Y \) are independent, then

\[
\gamma^2 = \left(\frac{\mu_{4Y}}{\sigma_Y^4} \right) \sigma^2 + \frac{\mu_{4X}}{\sigma_X^4}.
\]

Furthermore, by normality assumption, we have

\[
\gamma^2 = 4\sigma^2.
\]

Proof. Note that for independent populations \(\mu_{22} = \sigma_X^2 \sigma_Y^2 \) and for normal populations, \(\mu_{4X} = 3\sigma_X^4 \) and \(\mu_{4Y} = 3\sigma_Y^4 \). \(\Box \)

By the theorem we have just proved

\[
T_n = \sqrt{n} \left(\frac{S - \sigma}{\gamma} \right) \xrightarrow{\mathcal{L}} N(0, 1) \quad \text{as } n \to \infty \quad (1)
\]

This result can be used to construct asymptotic confidence interval and hypothesis testing.

2.1 Asymptotic Confidence Interval

Since the parameter \(\gamma \) in \(T_n \) depends on the unknown parameter \(\sigma \), it can not be used as a pivotal quantity for the parameter \(\sigma \).
Theorem 2.3. If X and Y are independent, then
\[T_n^* = \sqrt{n} \left(\frac{S - \sigma}{\hat{\gamma}_n} \right) \xrightarrow{D} N(0,1) \quad \text{as } n \to \infty, \] (2)

where
\[\hat{\gamma}_n = \left(\frac{m_{4Y}}{S_{Y}^4} - 2 \right) S^2 + \frac{m_{4X}}{S_{X}^4}, \]

and \(m_{4X} \) and \(m_{4Y} \) are the fourth sample moments of \(X \) and \(Y \), respectively.

Proof. By the weak law of large numbers,
\[S_{X}^2 \xrightarrow{P} \sigma_{X}^2, \quad S_{Y}^2 \xrightarrow{P} \sigma_{Y}^2, \quad m_{4X} \xrightarrow{P} \mu_{4X}, \quad m_{4Y} \xrightarrow{P} \mu_{4Y}, \quad \text{as } n \to \infty. \]

From this and the Slutsky’s theorem we have,
\[\begin{pmatrix} S_{X}^2 & m_{4X} \\ S_{Y}^2 & m_{4Y} \end{pmatrix} \xrightarrow{P} \begin{pmatrix} \sigma_{X}^2 & \mu_{4X} \\ \sigma_{Y}^2 & \mu_{4Y} \end{pmatrix} \quad \text{as } n \to \infty. \]

By Slutsky’s theorem \(\hat{\gamma}_n \xrightarrow{P} \gamma \), as \(n \to \infty \). The proof is completed by using Theorem 2.1. \(\square \)

Corollary 2.4. By normality assumption, we have
\[\hat{\gamma}_n = 2S. \]

Now, \(T_n^* \) can be used as a pivotal quantity to construct asymptotic confidence interval for \(\sigma \),
\[\left(S - \frac{\hat{\gamma}_n}{\sqrt{n}} Z_{\alpha/2}, S + \frac{\hat{\gamma}_n}{\sqrt{n}} Z_{\alpha/2} \right). \] (3)

Hypothesis Testing
Hypothesis testing about \(\sigma \) is important in practice. For instance, the assumption \(\sigma = 1 \) is equivalent to the assumption \(\sigma_{X}^2 = \sigma_{Y}^2 \). In general, to test \(H_0 : \sigma = \sigma_0 \), the test statistic can be
\[T_0 = \sqrt{n} \left(\frac{S - \sigma_0}{\sigma^*} \right), \] (4)
where
\[
\sigma^* = \sqrt{\frac{m_4Y\sigma_0^2 - 2\sigma_0m_{22} - m_{4X}}{S_Y^4}}.
\]

By similar methodology applied in Theorem 2.3, it can be shown that under null hypothesis, \(T_0\) has asymptotic standard normal distribution. Note that, in the case \(n \neq m\), it is sufficient to replace \(n\) by \(n^* = \min(m, n)\) in the above results.

Remark 2.5. By normality assumption,
\[
T_n^* = \sqrt{n}(S - \sigma) \overset{\mathcal{L}}{\to} N(0, 1), \quad \text{as } n \to \infty.
\] (5)

This result can be used to construct asymptotic confidence interval and hypothesis testing for the parameter \(\sigma\), in two independent normal populations, i.e.,
\[
S \pm 2S \frac{Z_{\alpha/2}}{\sqrt{n}}
\] (6)

Also, to test \(H_0 : \sigma = \sigma_0\), in two independent normal populations, we can use the test statistic
\[
T_0 = \frac{S - \sigma_0}{2\sigma_0},
\] (7)

which has asymptotic standard normal distribution.

In the case \(\sigma_0 = 1\), which is equivalent to \(\sigma_X^2 = \sigma_Y^2\), we can also use Fisher statistic as follows:
\[
F = \frac{S_X^2}{S_Y^2},
\]
which has the exact distribution \(F\) with degrees of freedom \(m-1\) and \(n-1\), i.e., \(F(m-1,n-1)\).

3. Simulation

In this section, we provide the simulation study to compare our confidence interval (CI-1) with confidence interval based on \(F\)-statistic (CI-2), i.e.,
\[
\left(\frac{s_X^2}{s_Y^2}F_{1-\alpha/2}(n-1, m-1), \frac{s_X^2}{s_Y^2}F_{\alpha/2}(n-1, m-1)\right),
\]
Table 1: The empirical probability coverage and the length of the intervals for normal populations

<table>
<thead>
<tr>
<th>n</th>
<th>Critical Region</th>
<th>$\sigma_y^2 = 8$</th>
<th>$\sigma_y^2 = 32$</th>
<th>$\sigma_y^2 = 8$</th>
<th>$\sigma_y^2 = 10$</th>
<th>$\sigma_y^2 = 8$</th>
<th>$\sigma_y^2 = 32$</th>
<th>$\sigma_y^2 = 8$</th>
<th>$\sigma_y^2 = 32$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>CI-1</td>
<td>0.9536</td>
<td>0.2469</td>
<td>0.9536</td>
<td>0.7912</td>
<td>0.9511</td>
<td>1.2356</td>
<td>0.9487</td>
<td>3.9521</td>
</tr>
<tr>
<td></td>
<td>CI-2</td>
<td>0.9512</td>
<td>0.2475</td>
<td>0.9509</td>
<td>0.7920</td>
<td>0.9503</td>
<td>1.2375</td>
<td>0.9509</td>
<td>3.9600</td>
</tr>
<tr>
<td>100</td>
<td>CI-1</td>
<td>0.9498</td>
<td>0.1639</td>
<td>0.9498</td>
<td>0.5309</td>
<td>0.9589</td>
<td>0.8256</td>
<td>0.9499</td>
<td>2.6613</td>
</tr>
<tr>
<td></td>
<td>CI-2</td>
<td>0.9499</td>
<td>0.1675</td>
<td>0.9501</td>
<td>0.5360</td>
<td>0.9511</td>
<td>0.8375</td>
<td>0.9502</td>
<td>2.6800</td>
</tr>
<tr>
<td>200</td>
<td>CI-1</td>
<td>0.9499</td>
<td>0.1098</td>
<td>0.9503</td>
<td>0.3615</td>
<td>0.9498</td>
<td>0.5698</td>
<td>0.9501</td>
<td>1.7957</td>
</tr>
<tr>
<td></td>
<td>CI-2</td>
<td>0.9507</td>
<td>0.1175</td>
<td>0.9501</td>
<td>0.3760</td>
<td>0.9504</td>
<td>0.5875</td>
<td>0.9500</td>
<td>1.8800</td>
</tr>
<tr>
<td>500</td>
<td>CI-1</td>
<td>0.9499</td>
<td>0.0523</td>
<td>0.9499</td>
<td>0.2034</td>
<td>0.9501</td>
<td>0.3256</td>
<td>0.9499</td>
<td>1.0985</td>
</tr>
<tr>
<td></td>
<td>CI-2</td>
<td>0.9500</td>
<td>0.0750</td>
<td>0.9501</td>
<td>0.2400</td>
<td>0.9501</td>
<td>0.3750</td>
<td>0.9499</td>
<td>1.2000</td>
</tr>
</tbody>
</table>

Table 2: The empirical powers of the tests

<table>
<thead>
<tr>
<th>n</th>
<th>Critical Region</th>
<th>$\sigma_X^2 = 8$</th>
<th>$\sigma_Y^2 = 32$</th>
<th>$\sigma_X^2 = 8$</th>
<th>$\sigma_Y^2 = 10$</th>
<th>$\sigma_X^2 = 8$</th>
<th>$\sigma_Y^2 = 32$</th>
<th>$\sigma_X^2 = 8$</th>
<th>$\sigma_Y^2 = 32$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>T-1</td>
<td>0.9930</td>
<td>0.9284</td>
<td>0.9610</td>
<td>0.9503</td>
<td>0.9518</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-2</td>
<td>0.9102</td>
<td>0.8927</td>
<td>0.8880</td>
<td>0.8871</td>
<td>0.8990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>T-1</td>
<td>0.9994</td>
<td>0.9858</td>
<td>0.9433</td>
<td>0.9902</td>
<td>0.9711</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-2</td>
<td>0.8986</td>
<td>0.9168</td>
<td>0.8825</td>
<td>0.9156</td>
<td>0.9072</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>T-1</td>
<td>1</td>
<td>0.9969</td>
<td>0.9728</td>
<td>0.9980</td>
<td>0.98094</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-2</td>
<td>0.9599</td>
<td>0.9247</td>
<td>0.9523</td>
<td>0.9248</td>
<td>0.9272</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>T-1</td>
<td>1</td>
<td>0.9999</td>
<td>0.9965</td>
<td>0.9999</td>
<td>0.9952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-2</td>
<td>1</td>
<td>0.9298</td>
<td>0.9556</td>
<td>0.9698</td>
<td>0.9335</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

in view of the empirical coverage and average length.

We simulate 50000 times of the above confidence intervals for normal populations with $m=n=50$, 100, 200 and 500 for different values of σ_X^2 and σ_Y^2. The empirical coverage and mean lengths are summarized in the Table 1.

As can be seen, in terms of the empirical probability coverage, two methods have the same empirical probability coverage. In terms of the length of the interval, our method is better. Also, the critical region which is constructed by inverting our confidence interval $(T-1)$ has more power than the critical regions corresponding to the other confidence interval $(T-2)$. This subject can be seen by a simulation study for test $H_0: \sigma = 1$, the empirical powers of the tests are presented in Table 2.
The power of the presented method is more than the other method and it can be stated that the test statistic (5) has a reasonable power in comparison with competing method.

Acknowledgment
The authors are grateful for the comments and suggestions by the referees and Editor-in-Chief. Their comments and suggestions have greatly improved the paper.

References

Mohammad Reza Mahmoudi
Department of Statistics
College of Sciences
Ph.D Student of Statistics
Shiraz University
Shiraz, Iran
E-mail: rezastat@yahoo.com

Marzieh Mahmoudi
Department of Statistics
College of Sciences
M.Sc of Statistics
Shiraz University
Shiraz, Iran
E-mail: marzieh_mahmoudi@yahoo.com