Effect of Polynomial Identity $x[x, y] = (x[x, y])^n$ in the Commutativity of Rings

Z. Tabatabaei
Islamic Azad University-Marvdasht Branch

Abstract. In this paper we study some sufficient conditions for commutativity of a ring according to Jacobson's idea. Jacobson proved that if R is a ring satisfying $x^n = x$ ($n > 1$) for each $x \in R$, then R is commutative. In this paper, we show that R is commutative if for every $x, y \in R$ there exists a positive integer $n = n(x, y)$ such that $(x[x, y])^n = x[x, y]$.

AMS Subject Classification: 13PXX, 14A05.
Keywords and Phrases: Commutator, left(right) s-unital, left semisimple ring, Jacobson Radical, left Primitive ring, division ring, faithful simple left R-module.

1. Introduction

Throughout this paper R denotes an associative ring with center C and Jacobson radical $J(R)$.

In 1950, Jacobson proved that if for each x in R there exists a positive integer $n > 1$ such that $x^n = x$, then R is commutative. After that in [1], Searcoid and MacHale proved that if for each x, y in R, there exists a positive integer $n = n(x, y) > 1$ such that $(xy)^n = xy$, then R is commutative. In [3], Hirano and Yaqub studied the rings satisfying $(x - x^n)(y - y^n) = 0$ for every $x, y \in R$ and recently, Bell, Yaqub and Abu-khuzam in [5], [6], [7] have considered some conditions and periodicity conditions for rings to be commutative.

We will fix commutator $[x, y] = xy - yx$ in place of y and obtain commutative results for rings.
A ring R is called left (resp. right) s-unital ([2]) if for each $x \in R$ we have $x \in Rx$ (resp. $x \in xR$). A ring R is called s-unital if for each x in R, $x \in xR \cap Rx$.

If R is a s-unital ring, then for any finite subset K of R, there exists an element e in R such that $xe = ex = x$ for all $x \in K$ (see [2]). Such an element e will be called a pseudo-identity of K.

A ring R is called to be semisimple if its Jocobson radical $J(R)$ is zero.

A ring R is called left primitive if there exists a simple faithful left R-module.

A ring R is said to be a subdirect product of the family of rings $\{R_i| i \in I\}$ if R is a subring of the direct product $\prod_{i \in I} R_i$ such that $\pi_k(R) = R_k$ for every $k \in I$, where $\pi_k : \prod_{i \in I} R_i \rightarrow R_k$ is the canonical epimorphism.

2. Preliminaries

First of all, we recall some concepts and prove some results that are used in the sequel.

Theorem 2.1. A nonzero ring R is semisimple if and only if R is isomorphic to a subdirect product of primitive rings.

Proof. See [8, pro. 3.2]. □

Theorem 2.2. If R is a ring, then we have

(i) $J(R)$ is the intersection of all the left annihilators of simple left R-modules.

(ii) $J(R)$ is the intersection of all the regular maximal left ideals of R.

(iii) $J(R)$ is the intersection of all the left primitive ideals of R.

(iv) $J(R)$ is a left quasi-regular ideal which contains every left quasi-regular left ideal of R.

Proof. See [8, Theorem 2.3]. □

We say R satisfies (\ast) if, for each x, y in R, there exists a positive integer $n = n(x, y) > 1$ such that $(x[y, x])^n = x[y, x]$.
Lemma 2.3. Let R and S be rings such that R satisfies (\ast) and $\varphi: R \to S$ is a ring epimorphism. Then S satisfies (\ast).

Proof. Let $x, y \in S$. Since φ is onto, there exist $s, t \in R$ such that $\varphi(t) = x$, $\varphi(s) = y$. But R satisfies (\ast). Therefore there exists a positive integer $n = n(t, s) > 1$ such that $(t[t, s])^n = t[t, s]$. On the other hand, we have

$$\varphi([t, s]) = \varphi(ts - st),$$

and since φ is a ring homomorphism, we have

$$\varphi([t, s]) = \varphi(t)\varphi(s) - \varphi(s)\varphi(t),$$

$$= [\varphi(t), \varphi(s)],$$

$$= [x, y].$$

Thus

$$x[x, y] = \varphi(t)[\varphi(t), \varphi(s)],$$

$$= \varphi(t[t, s]),$$

$$= \varphi((t[t, s])^n),$$

$$= (\varphi(t)[\varphi(t), \varphi(s)])^n,$$

$$= (x[x, y])^n.$$ The result follows. \(\square\)

Lemma 2.4. If R is a ring, then the quotient ring $\frac{R}{J(R)}$ is semisimple.

Proof. See [8. Theorem 2.14.]. \(\square\)

Lemma 2.5. Let $b \in R$ and $a \in J(R)$ such that $ab = b$. Then $b = 0$.

Proof. Let $a \in J(R)$. By theorem 2.2, there exists $r \in R$ such that $r + a - ra = 0$ and therefore

$$0 = 0b = (r + a - ra)b = rb + ab - rab = b. \square$$
Theorem 2.6. Let K be a division ring. If for any $x, y \in K$ there exists a positive integer $n = n(x, y) > 1$ such that $[x, y]^n = [x, y]$, then K is commutative.

Proof. see [9. Theorem 12.10]. □

Theorem 2.7. Let K be a division ring which satisfies (\ast). Then K is commutative.

Proof. Let x, y be arbitrary elements in K. If $x = 0$, then $[x, y] = 0$ and $xy = yx$. If $x \neq 0$, we put $z = x^{-1}y$. Hence by (\ast), there exists a positive integer $n = n(x, z) > 1$ such that

$$(x[x, z])^n = x[x, z],$$

$$([x, xz])^n = [x, xz],$$

$$[x, y]^n = [x, y].$$

Hence for every $x, y \in K$, there exists a positive integer $n = n(x, y) > 1$ such that $[x, y]^n = [x, y]$. Thus, by theorem 2.6, K is commutative. □

Theorem 2.8. Let R be a left primitive ring which satisfies (\ast). Then R is commutative.

Proof. Let R be a left primitive ring. By Structure Theorem for Left primitive ring ([9]), there exists a division ring $K = \text{End}_R(V)$ (V is a faithful simple left R-module) such that we have one of the following statements:

i) There exists a positive integer m such that $R \cong M_m(K)$.

ii) For any integer $m > 1$, there exists a subring R_m of R which admits a ring homomorphism onto $M_m(K)$.

But for any $m \geq 2$, the division ring $M_m(K)$ doesn’t satisfy (\ast). For example, if $x = E_{11}$, $y = E_{12}$, then $x[x, y] = y$ and therefore $(x[x, y])^n = y^n = 0$. Thus $m = 1$ and $R \cong K$. By theorem 2.6, R is commutative. □
EFFECT OF POLYNOMIAL IDENTITY $x[x, y] = (x[x, y])^n$...

Theorem 2.9. Let R be a semisimple ring which satisfies $(*)$. Then R is commutative.

Proof. By theorem 2.1, R is isomorphic to a subdirect product of primitive rings. By Lemma 2.3, every R_i satisfies $(*)$. Therefore, by theorem 2.8, each R_i is commutative and so R is commutative. □

3. Main Results

Theorem 3.1. Let R be a ring which satisfies $(*)$. Then $x[x, y] = 0$, for every $x, y \in R$.

Proof. The semisimple ring $R = \frac{R}{J(R)}$ satisfies $(*)$ and so by theorem 2.9, R is commutative. Therefore, for each x, y in R, $[x, y] \in J(R)$ and there exist a positive integer $n = n(x, y) > 1$ such that

$$([x, xy])^n = (x[x, y])^n = x[x, y] = [x, xy],$$

and so

$$[x, xy]^{n-1}[x, xy] = [x, xy]$$

by lemma 2.5., $x[x, y] = 0$. □

Corollary 1. Let R be a left s-unital ring satisfies $(*)$. Then R is commutative.

Proof. Since R is left s-unital, so for every x in R, there exists $e \in R$ that $x = ex$. Now we show that R is right s-unital.

If $x \neq xe$, then by $(*)$ there exists a positive integer $n > 1$ such that

$$e[e, xe - x] = (e[e, xe - x])^n.$$ But we have

$$(e[e, xe - x])^2 = (xe - x - xe^2 + xe)^2 = 0.$$ Therefore,

$$e[e, xe - x] = 0$$
and so
\[xe - x - xe^2 + xe = 0. \]
and hence, \(x = x(2e - e^2). \) If \(e = 2e - e^2, \) for every \(x \in R, \) there exists \(e \in R \) such that \(x = xe \) and thus \(R \) is s-unital.

For every \(x, y \) in \(R, \) there exists \(e \in R \) such that \(xe = ex = x \) and \(ye = ey = y \) (see[2]) and, by theorem 3.1, we have
\[
0 = [x + e, (x + e)y],
= [x + e, xy + y],
= [x, xy + y] + [e, xy + y],
\]

since \([e, xy + y] = 0, so\)
\[
0 = [x, xy + y],
= [x, xy] + [x, y].
\]

By theorem 3.1., \([x, xy] = 0, thus [x, y] = 0. Therefore, R is commutative. □\]

Corollary 2. In corollary 1, being s-unital is necessary, for example the following noncommutative ring isn’t s-unital:

\[
A = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} : a, b, c \text{ are any real numbers} \right\}.
\]

But for every \(x, y, z \) in \(A, xyz = 0 \) and so \(A \) satisfies (*), and \(A \) is noncommutative ring.

References

EFFECT OF POLYNOMIAL IDENTITY $x[x, y] = (x[x, y])^n$

Archive of SID

Zohre Tabatabaei
Department of Mathematics
Islamic Azad University-Marvdasht Branch
Shiraz, Iran.
E-mail: Parivash.tabatabae@yahoo.com

www.SID.ir