On the normality of directed Cayley graphs of abelian groups with valency four

M. Alaeiyana,1, Y. Eidizadehb

aDepartment of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
bSchool of Math., Iran University of Science and Technology, Tehran, Iran.

Abstract

A Cayley digraph $\Gamma = \text{Cay}(G, S)$ is called normal for G if the right regular representation $R(G)$ of G is normal in the full automorphism group $\text{Aut}(\Gamma)$. In this paper, we determine some non-normal directed Cayley graphs of finite abelian groups with valency 4.

Keywords: Cayley graph, Automorphism groups, Normal Cayley digraph.

© 2011 Published by Islamic Azad University-Karaj Branch.

1 Introduction

Throughout this paper graphs are finite, simple and directed. For a graph Γ, let $V(\Gamma)$, $E(\Gamma)$ and $\text{Aut}(\Gamma)$ denote its vertex set, edge set and full automorphism group, respectively. Let G be a finite group and S a subset of G not containing the identity 1_G. The Cayley digraph $\Gamma = \text{Cay}(G, S)$ of G with respect to S is a digraph defined by $V(\Gamma) = G$, $E(\Gamma) = \{(g, sg) | g \in G, s \in S\}$. In particular, if $S = S^{-1}$ such a digraph can be viewed as an undirected graph by coalescing each pair (g, sg) and (sg, g) of directed edges into a single undirected edge $\{g, sg\}$. A Cayley digraph $\Gamma = \text{Cay}(G, S)$ is called normal for G if the right regular representation $R(G)$ of G is normal of the

1Corresponding Author. E-mail Address: alaeiyan@iust.ac.ir
automorphism group of \(\Gamma \) (see [6]). Also \(\Gamma \) is said to be normal edge-transitive if \(N_{Aut(X)}(G) \) is transitive on edges.

The concept of normality of Cayley digraphs is known to be of fundamental importance for the study of arc-transitive graphs. So, for a given finite group \(G \), a natural problem is to determine all the normal or non-normal Cayley digraphs of \(G \). Recently, some meaningful results in this direction, especially for the undirected Cayley graphs, have been obtained. For example, [3, 4] determined all non-normal Cayley graphs of group of order \(2p \) and \(pq \) (\(p \) and \(q \) are prime), respectively. [1] determined all non-normal Cayley graphs of abelian groups with valency at most 4. Later, [2] deal with the case of valency 5. Moreover, some of these results have been applied to the classifications of graphs of certain category (Find more information in [7, 8] for example).

Let \(G \) be a finite abelian group, and \(\Gamma = \text{Cay}(G,S) \) be a connected directed Cayley graph of \(G \) with respect to \(S \) of valency 4. So we may assume that \(S = \{a,b,c,d\} \). We shall divide the set \(S \) into five different cases:

\((I) \) \(a^2 = b^2 = c^2 = d^2 \); otherwise, without loss of generality, we may assume that \((II) a^2 = b^2 \neq c^2 = d^2 \); \((III) a^2 = b^2 \neq c^2 \neq d^2 \); \((IV) a^2 = b^2 = c^2 \neq d^2 \); \((V) a^2, b^2, c^2 \) and \(d^2 \) are mutually unequal.

In this paper, we consider the cases (I) and (II) and the other cases are open problems. The following theorem deal with the cases (I) and (II).

Theorem 1.1 Let \(\Gamma = \text{Cay}(G,S) \) be a connected directed Cayley graph of an abelian group \(G \) with respect to \(S \) of valency 4, and let \(S = \{a,b,c,d\} \). Then:

(i) If \(a^2 = b^2 = c^2 = d^2 \), then \(\Gamma \) is normal.

(ii) If \(a^2 = b^2 \neq c^2 = d^2 \) and \(\langle a,b \rangle \cap \langle c,d \rangle = 1 \), then \(\Gamma \) is normal except one of the following cases happens:

(1) \(G = \langle a \rangle \times \langle c \rangle = \mathbb{Z}_{2n} \times \mathbb{Z}_{2m}, S = \{a,a^{n+1},c,c^{m+1}\} \) \((n > 2, m > 2)\).

(2) \(G = \langle a \rangle \times \langle u \rangle \times \langle c \rangle \times \langle v \rangle = \mathbb{Z}_n \times \mathbb{Z}_2 \times \mathbb{Z}_m \times \mathbb{Z}_2, S = \{a,au,c,cv\} \), where \(u = ab^{-1} \) and \(v = cd^{-1} \).

(3) \(G = \langle a \rangle \times \langle c \rangle \times \langle v \rangle = \mathbb{Z}_n \times \mathbb{Z}_m \times \mathbb{Z}_2, S = \{a,a^{n+1},c,cv\} \) \((n > 2)\), where \(v = cd^{-1} \).

(4) \(G = \langle a \rangle \times \langle u \rangle \times \langle c \rangle = \mathbb{Z}_n \times \mathbb{Z}_2 \times \mathbb{Z}_{2m}, S = \{a,au,c,c^{m+1}\} \) \((m > 2)\).
2 Preliminaries

In this section, we give some preliminary results to be used in the sequel. Let $\Gamma = \text{Cay}(G,S)$ be a directed Cayley graph of G with respect to S and $\text{Aut}(G,S) = \{ \alpha \in \text{Aut}(G) | S^{\alpha} = S \}$. Write $A := \text{Aut}(\Gamma)$ and denote by A_1 the subgroup of $\text{Aut}(\Gamma)$ consisting of all automorphisms which fix the identity 1_G of G. The following proposition is basic.

Proposition 2.1 ([2, Proposition 2.1]) Let $\Gamma = \text{Cay}(G,S)$ be a Cayley (di)graph of G on the set S.

(i) $\text{Aut}(\Gamma)$ contains the right regular representation $R(G)$ of G and so Γ is vertex-transitive.

(ii) Γ is connected if and only if $G = \langle S \rangle$.

(iii) Γ is undirected if and only if $S^{-1} = S$.

Hence, all Cayley (di)graphs are vertex-transitive.

Proposition 2.2 ([6, Proposition 1.3]) As the above notations:

(i) $N_A(R(G)) = R(G) \text{Aut}(G,S)$.

(ii) $A = R(G) \text{Aut}(G,S)$ if and only if $R(G)$ is normal in A.

Proposition 2.3 ([6, Proposition 1.5]) The Cayley (di)graph is normal if and only if $A_1 = \text{Aut}(G,S)$. In particular, [2] gives a sufficient condition for the normality of Cayley (di)graphs of abelian groups.

Theorem 2.4 ([2, Theorem 1.1]) Let G be a finite abelian group and S a generating set of G not containing the identity 1_G. Assume S satisfies the condition

$$s,t,u,v \in S \text{ with } st = uv \neq 1 \Rightarrow \{s,t\} = \{u,v\}.$$ (1)

Then the Cayley (di)graph $\text{Cay}(G,S)$ is normal.

We also need the following two simple proposition.
Proposition 2.5 ([2, Proposition 1.5]) Let G be a finite group, S a generating set of G not containing the identity 1_G, and α an automorphism of G. The Cayley (di)graph $\text{Cay}(G, S)$ is normal if and only if $\text{Cay}(G, S^\alpha)$ is normal.

Proposition 2.6 ([2, Proposition 2.6]) Let $G = G_1 \times G_2$ be the direct product of two finite group G_1 and G_2, let S_1 and S_2 be subset of G_1 and G_2 respectively, and let $S = S_1 \cup S_2$ be the disjoint union of two subset S_1 and S_2. Then we have:

(i) $\text{Cay}(G, S) \cong \text{Cay}(G_1, S_1) \times \text{Cay}(G_2, S_2)$.

(ii) If $\text{Cay}(G, S)$ is normal, then $\text{Cay}(G_1, S_1)$ is normal.

(iii) If $\text{Cay}(G_1, S_1)$ and $\text{Cay}(G_2, S_2)$ are both normal and relatively prime, then $\text{Cay}(G, S)$ is normal.

3 Main Results

Let G be a finite abelian group, and let $\Gamma = \text{Cay}(G, S)$ be a connected directed Cayley graph of G with respect to S of valency 4.

Proof of Theorem 1.1 (i). First of all, we prove that A_1 acts faithfully on the set S. By the vertex-transitivity and connectedness of Γ, it suffices to prove that, for any vertex x of Γ, if an automorphism α of Γ, fixes x and all elements of xS, then α also fixes all elements of xS^2. Actually, if α fixes xS pointwise, then for any $v \in xS$, α fixes vS setwise. Hence $(xaS \cap xbS \cap xcS \cap xdS)^\alpha = (xaS)^\alpha \cap (xbS)^\alpha \cap (xcS)^\alpha \cap (xdS)^\alpha = xaS \cap xbS \cap xcS \cap xdS$. That is, $(xa^2)^\alpha = xa^2$. Since $(xaS \cap xbS)^\alpha = xaS \cap xbS$, we have $\{xa^2, xab\}^\alpha = \{xa^2, xab\}$, and as $(xa^2)^\alpha = xa^2$, we have $(xab)^\alpha = xab$. Note that $(xaS \cap xcS)^\alpha = xaS \cap xcS$ and $(xa^2)^\alpha = xa^2$, hence we have $(xac)^\alpha = xac$. The same argument as above can be employed to show that $(xad)^\alpha = xad$, $(xbc)^\alpha = xbc$, $(xbd)^\alpha = xbd$ and $(xcd)^\alpha = xcd$. It now follows that α fixes all elements of xS^2.

Now we turn to the normality of Γ. By Proposition 2.3, what remains to be proved is $A_1 \leq \text{Aut}(G)$. Since A_1 acts faithfully on S, A_1 is isomorphic to a subgroup of S_4. For any $\sigma \in A_1$, we prove that σ is also in $\text{Aut}(G)$ as follows.
Case 1. $o(\sigma) = 1$. In this case, σ is obviously in $\text{Aut}(G)$.

Case 2. $o(\sigma) = 2$. Without loss of generality, we may assume that $a^\sigma = b, b^\sigma = a, c^\sigma = c$ and $d^\sigma = d$. To prove $\sigma \in \text{Aut}(G)$, it suffices to show that

$$(s_1s_2...s_n)^\sigma = s_1^\sigma s_2^\sigma ... s_n^\sigma, \forall s_1, s_2, ..., s_n \in S. \quad (2)$$

Let x be given in G, to prove (2), we only need to show

$$(xs)^\sigma = x^\sigma s^\sigma, \forall s \in S \Rightarrow (xu)^\sigma = x^\sigma u^\sigma v^\sigma, \forall u, v \in S. \quad (3)$$

In fact, once (3) is proved, (2) is easily verified by induction on n. Suppose $(xs)^\sigma = x^\sigma s^\sigma$ for all $s \in S$. Note that $(gS)^\sigma = g^\sigma S, \forall g \in G$. Since,

$$(xaS \cap xbS \cap xcS \cap xdS)^\sigma = (xaS)^\sigma \cap (xbS)^\sigma \cap (xcS)^\sigma \cap (xdS)^\sigma = x^\sigma a^\sigma S \cap x^\sigma b^\sigma S \cap x^\sigma c^\sigma S \cap x^\sigma d^\sigma S = x^\sigma bS \cap x^\sigma aS \cap x^\sigma cS \cap x^\sigma dS,$$

we have $(xa^2)^\sigma = x^\sigma b^2 = x^\sigma (a^\sigma)^2$. Hence

$$(xb^2)^\sigma = x^\sigma (b^\sigma)^2, (xc^2)^\sigma = x^\sigma (c^\sigma)^2, (xd^2)^\sigma = x^\sigma (d^\sigma)^2.$$ Since,

$$(xaS \cap xbS \cap xcS \cap xdS)^\sigma = (xaS)^\sigma \cap (xbS)^\sigma \cap (xcS)^\sigma \cap (xdS)^\sigma = x^\sigma a^\sigma S \cap x^\sigma b^\sigma S \cap x^\sigma c^\sigma S \cap x^\sigma d^\sigma S \neq x^\sigma bS \cap x^\sigma aS \cap x^\sigma cS \cap x^\sigma dS, \quad (3)$$

we have $(xabc)^\sigma = x^\sigma a^\sigma c^\sigma$. Since $(xaS \cap xdS)^\sigma = (xaS)^\sigma \cap (xdS)^\sigma = x^\sigma a^\sigma S \cap x^\sigma d^\sigma S = x^\sigma bS \cap x^\sigma dS$, it follows that

$$(x^2a^2, x^2ad)^\sigma = x^\sigma (a^\sigma)^2, x^\sigma a^\sigma d^\sigma.$$

And as $(xa^2)^\sigma = x^\sigma (a^\sigma)^2$, we have

$$(x^2a^2, x^2ad)^\sigma = x^\sigma (a^\sigma)^2.$$ Since $(xbS \cap xcS)^\sigma = x^\sigma b^\sigma S \cap x^\sigma c^\sigma S = x^\sigma aS \cap x^\sigma cS$, we conclude that

$$(xb^2, xbc)^\sigma = x^\sigma a^2, x^\sigma ac = x^\sigma (b^\sigma)^2, x^\sigma b^\sigma c^\sigma.$$ But we have already had

$$(xb^2)^\sigma = x^\sigma (b^\sigma)^2.$$ Thus $(xbc)^\sigma = x^\sigma b^\sigma c^\sigma$. The same argument as above can be employed to show that $(xbd)^\sigma = x^\sigma b^\sigma d^\sigma$ and $(xcd)^\sigma = x^\sigma c^\sigma d^\sigma$.

Case 3. $o(\sigma) = 2$. But in this case, we may assume that $a^\sigma = b, b^\sigma = a, c^\sigma = d$, and $d^\sigma = c$. As above, we only need to prove (3). Suppose $(xs)^\sigma = x^\sigma s^\sigma$ for all $s \in S$.

Since,

$$(xaS \cap xbS \cap xcS \cap xdS)^\sigma = (xaS)^\sigma \cap (xbS)^\sigma \cap (xcS)^\sigma \cap (xdS)^\sigma = x^\sigma a^\sigma S \cap x^\sigma b^\sigma S \cap x^\sigma c^\sigma S \cap x^\sigma d^\sigma S = x^\sigma bS \cap x^\sigma aS \cap x^\sigma dS \cap x^\sigma cS,$$

we have $(xa^2)^\sigma = x^\sigma b^2 = x^\sigma (a^\sigma)^2$. Hence

$$(xb^2)^\sigma = x^\sigma (b^\sigma)^2, (xc^2)^\sigma = x^\sigma (c^\sigma)^2, (xd^2)^\sigma = x^\sigma (d^\sigma)^2.$$ Since,
(xaS \cap xbS)^\sigma = (xaS)^\sigma \cap (xbS)^\sigma = x^\sigma a^\sigma S \cap x^\sigma b^\sigma S = x^\sigma bS \cap x^\sigma aS, \{xa^2, xab\}^\sigma = \{x^\sigma a^2, x^\sigma ab\} = \{x^\sigma b^2, x^\sigma a^\sigma b^\sigma\} = \{x^\sigma (a^\sigma)^2, x^\sigma a^\sigma b^\sigma\}. However, we have known that (xa^2)^\sigma = x^\sigma (a^\sigma)^2. Thus (xab)^\sigma = x^\sigma a^\sigma b^\sigma. As (xaS \cap xcS)^\sigma = (xaS)^\sigma \cap (xcS)^\sigma = x^\sigma a^\sigma S \cap x^\sigma c^\sigma S = x^\sigma bS \cap x^\sigma dS and (xa^2)^\sigma = x^\sigma (a^\sigma)^2, we have (xac)^\sigma = x^\sigma a^\sigma c^\sigma. Since (xaS \cap xdS)^\sigma = (xaS)^\sigma \cap (xdS)^\sigma = x^\sigma a^\sigma S \cap x^\sigma d^\sigma S = x^\sigma bS \cap x^\sigma cS, it follows that \{xa^2, xad\}^\sigma = \{x^\sigma b^2, x^\sigma bc\} = \{x^\sigma (a^\sigma)^2, x^\sigma a^\sigma d^\sigma\}, and as (xa^2)^\sigma = x^\sigma (a^\sigma)^2, we have (xad)^\sigma = x^\sigma a^\sigma d^\sigma. Since (xbS \cap xcS)^\sigma = x^\sigma b^\sigma S \cap x^\sigma c^\sigma S = x^\sigma aS \cap x^\sigma dS, we conclude that \{xb^2, xbc\}^\sigma = \{x^\sigma a^2, x^\sigma ad\} = \{x^\sigma (b^\sigma)^2, x^\sigma b^\sigma c^\sigma\}. But we have already had (xb^2)^\sigma = x^\sigma (b^\sigma)^2, thus (xbc)^\sigma = x^\sigma b^\sigma c^\sigma. The same argument as above can be employed to show that (xbd)^\sigma = x^\sigma b^\sigma d^\sigma and (xcd)^\sigma = x^\sigma c^\sigma d^\sigma.

Case 4. \(o(\sigma) = 3 \). In this case, we assume that \(a^\sigma = b, b^\sigma = c, c^\sigma = a \) and \(d^\sigma = d \). As above, we only need to prove (3). Suppose \((xs)^\sigma = x^\sigma s^\sigma \) for all \(s \in S \). Since,

\[(xaS \cap xbS \cap xcS \cap xdS)^\sigma = (xaS)^\sigma \cap (xbS)^\sigma \cap (xcS)^\sigma \cap (xdS)^\sigma = x^\sigma a^\sigma S \cap x^\sigma b^\sigma S \cap x^\sigma c^\sigma S \cap x^\sigma d^\sigma S = x^\sigma bS \cap x^\sigma cS \cap x^\sigma aS \cap x^\sigma dS,\]

we have \((xa^2)^\sigma = x^\sigma b^2 = x^\sigma (a^\sigma)^2 \). Hence \((xb^2)^\sigma = x^\sigma (b^\sigma)^2, (xc^2)^\sigma = x^\sigma (c^\sigma)^2, (xd^2)^\sigma = x^\sigma (d^\sigma)^2 \). Since,

\[(xaS \cap xbS)^\sigma = (xaS)^\sigma \cap (xbS)^\sigma = x^\sigma a^\sigma S \cap x^\sigma b^\sigma S = x^\sigma bS \cap x^\sigma cS, \{xa^2, xab\}^\sigma = \{x^\sigma a^2, x^\sigma ab\} = \{x^\sigma b^2, x^\sigma a^\sigma b^\sigma\} = \{x^\sigma (a^\sigma)^2, x^\sigma a^\sigma b^\sigma\}.\]

we have known that \((xa^2)^\sigma = x^\sigma (a^\sigma)^2 \). Thus \((xab)^\sigma = x^\sigma a^\sigma b^\sigma \). As \((xaS \cap xcS)^\sigma = (xaS)^\sigma \cap (xcS)^\sigma = x^\sigma a^\sigma S \cap x^\sigma c^\sigma S = x^\sigma bS \cap x^\sigma aS \) and \((xa^2)^\sigma = x^\sigma (a^\sigma)^2 \), we have \((xac)^\sigma = x^\sigma a^\sigma c^\sigma \).

Since \((xaS \cap xdS)^\sigma = (xaS)^\sigma \cap (xdS)^\sigma = x^\sigma a^\sigma S \cap x^\sigma d^\sigma S = x^\sigma bS \cap x^\sigma dS, \) it follows that \(\{xa^2, xad\}^\sigma = \{x^\sigma b^2, x^\sigma bd\} = \{x^\sigma (a^\sigma)^2, x^\sigma a^\sigma d^\sigma\} \), and as \((xa^2)^\sigma = x^\sigma (a^\sigma)^2 \), we have \((xad)^\sigma = x^\sigma a^\sigma d^\sigma \). Since \((xbS \cap xcS)^\sigma = x^\sigma b^\sigma S \cap x^\sigma c^\sigma S = x^\sigma cS \cap x^\sigma aS, \) we conclude that \(\{xb^2, xbc\}^\sigma = \{x^\sigma a^2, x^\sigma ac\} = \{x^\sigma (b^\sigma)^2, x^\sigma b^\sigma c^\sigma\} \). But we have already had \((xb^2)^\sigma = x^\sigma (b^\sigma)^2 \), thus \((xbc)^\sigma = x^\sigma b^\sigma c^\sigma \). The same argument as above can be employed to show that \((xbd)^\sigma = x^\sigma b^\sigma d^\sigma \) and \((xcd)^\sigma = x^\sigma c^\sigma d^\sigma \).

Case 5. \(o(\sigma) = 4 \). In this case, we may assume that \(a^\sigma = b, b^\sigma = c, c^\sigma = d \) and \(d^\sigma = a \).

As above, we only need to prove (3). Suppose \((xs)^\sigma = x^\sigma s^\sigma \) for all \(s \in S \). Since,

\[(xaS \cap xbS \cap xcS \cap xdS)^\sigma = (xaS)^\sigma \cap (xbS)^\sigma \cap (xcS)^\sigma \cap (xdS)^\sigma = x^\sigma a^\sigma S \cap x^\sigma b^\sigma S \]

\(\cap x^a S \cap x^b S = x^a c S \cap x^b d S \cap x^a e S \), we have \((xa^2)^\sigma = x^a b^2 = x^a (a^2)\).

Hence \((xb^2)^\sigma = x^a (b^2)\), \((x^2)^\sigma = x^a (c^2)\), \((xd^2)^\sigma = x^a (d^2)\). Since,

\[(xaS \cap xbS)^\sigma = (xaS)^\sigma \cap (xbS)^\sigma = x^a a S \cap x^a a b S = x^a b S \cap x^a c S, \{xa^2, xb\}^\sigma = \{x^a b^2, x^a a b^2\} = \{x^a (a^2)^2, x^a a b^2\}.\]

However, we have known that \((xa^2)^\sigma = x^a (a^2)^2\). Thus \((xb)\sigma = x^a a b^x\). As \((xaS \cap xcS)^\sigma = (xaS)^\sigma \cap (xcS)^\sigma = x^a a S \cap x^a c S = x^a b S \cap x^a c S\) and \((xa^2)^\sigma = x^a (a^2)^2\), we have \((xac)\sigma = x^a a c^2\).

Since \((xaS \cap xdS)^\sigma = (xaS)^\sigma \cap (xdS)^\sigma = x^a a S \cap x^a d S = x^a b S \cap x^a a S\), it follows that \(\{xa^2, xd\}^\sigma = \{x^a b^2, x^a b a\} = \{x^a (a^2)^2, x^a a b \}\), and as \((xa^2)^\sigma = x^a (a^2)^2\), we have \((xad)\sigma = x^a a d^2\). Since \((xbS \cap xcS)^\sigma = x^a b S \cap x^a c S = x^a c S \cap x^a d S\), we conclude that \(\{xb^2, xbc\}^\sigma = \{x^a b^2, x^a b c^d\} = \{x^a (b^2)^2, x^a b c \}\). But we have already had \((xb^2)^\sigma = x^a (b^2)^2\), thus \((xbc)\sigma = x^a b c^2\). The same argument as above can be employed to show that \((xbd)\sigma = x^a b d^2\) and \((xcd)\sigma = x^a c d^2\).

So we come to the conclusion that \(A_1 \leq Aut(G)\). Hence \(\Gamma\) is normal.

Proof of Theorem 1.1 (ii). Since \(\langle a, b \rangle \cap \langle c, d \rangle = 1\) and \(G = \langle S \rangle = \langle a, b, c, d \rangle\), we have \(G = \langle a, b \rangle \times \langle c, d \rangle\). By Proposition 2.6(i), it is easy to see that \(\Gamma \cong Cay(\langle a, b \rangle, \{a, b\}) \times Cay(\langle c, d \rangle, \{c, d\}) = \Gamma_1 \times \Gamma_2\). Since \(a^2 = b^2\), by [9, Lemma 3.1], we know that \(\Gamma_1\) is non-normal, and we can also see that \(\Gamma\) is non-normal by Proposition 2.6(ii). In this case, \(G = \langle a, u \rangle \times \langle c, v \rangle\) where \(u = ab^{-1}\) and \(v = cd^{-1}\) are both involutions.

If \(u \in \langle a \rangle\) and \(v \in \langle c \rangle\), then \(G = \langle a \rangle \times \langle c \rangle = Z_{2n} \times Z_{2m}(n > 2, m > 2\) for some non-negative integer \(n, m\) and \(S = \{a, a^{n+1}, c, c^{m+1}\}\). If \(u \notin \langle a \rangle\) and \(v \notin \langle c \rangle\), then \(G = \langle a \rangle \times \langle u \rangle \times \langle c \rangle \times \langle v \rangle = Z_n \times Z_2 \times Z_m \times Z_2\), \(S = \{a, au, c, cv\}\). If \(u \in \langle a \rangle\) and \(v \notin \langle c \rangle\), then \(G = \langle a \rangle \times \langle c \rangle \times \langle v \rangle = Z_{2n} \times Z_m \times Z_2\) \((n > 2), S = \{a, a^{n+1}, c, cv\}\). If \(u \notin \langle a \rangle\) and \(v \in \langle c \rangle\), then \(G = \langle a \rangle \times \langle u \rangle \times \langle c \rangle = Z_n \times Z_2 \times Z_{2m}\), \(S = \{a, au, c, c^{m+1}\}\) \((m > 2)\). They are the cases (1)-(4) in Theorem 1.1, (ii), respectively.

Let \(\Gamma = Cay(G, S)\) be a directed Cayley graph for a finite group \(G\) on the set \(S\). Then \(\Gamma\) is normal edge-transitive if and only if \(Aut(G, S)\) is transitive on \(S\). It is known that if \(Aut(G, S)\) is transitive on \(S\), then all elements of \(S\) have the same order. Hence in Theorem 1.1, the cases 1, 3, 4 are not normal edge-transitive.
Acknowledgment
The first author thanks to the Islamic Azad University-Karaj Branch for granting and supporting the research project entitled "Normal edge-transitive Undirected Cayley graph of valency at most four".

References

