Periodicity of the Clifford Algebras

B. Askari¹, F. Fattahi

Department of Mathematics, Ghorveh Branch, Islamic Azad University, Ghorveh, Iran.

Abstract

In this paper we study the structure of Clifford Algebras $Cl_{p,q}$ associated with a non degenerate symmetric bilinear form of signature (p, q), where p, q are positive integer. Also we present a description of these algebras as matrix algebras, and then we will discuss the periodicity of these algebras completely. As a consequence, we create the related algebra matrix tables for these algebras, when $0 \leq p \leq 8$ and $8 \leq q \leq 13$. We also present an isomorphism between $Cl_{0,q,p}^0$ and $Cl_{0,p,q}^0$.

Keywords: Tensor algebra, Exterior algebra, Clifford algebra, Quadratic form, Bilinear form.

© 2011 Published by Islamic Azad University-Karaj Branch.

1 Introduction

Given any vector space, V, over a field, K, there is a special K-algebra, $T(V)$, together with a linear map, $i : V \rightarrow T(V)$, following the universal mapping property [1]. The algebra, $T(V)$, is the tensor algebra of V. It may be constructed as the direct sum $T(V) = \bigoplus_{i \geq 0} V^\otimes i$, Where $V^0 = K$, and $V^\otimes i$ is the i-fold tensor product of V with itself.

For every $i \geq 0$, there is a natural injection $\iota_n : V^\otimes n \rightarrow T(V)$ and in particular, an injection $\iota_0 : K \rightarrow T(V)$. The multiplicative unit, 1, of $T(V)$ is the image, $\iota_0(1)$, in $T(V)$ of the unit, 1, of the field K. Since every $v \in T(V)$ can be expressed as a finite

¹Corresponding author. E-mail: Bahman_Askari2003@yahoo.com
sum \(v = v_1 + v_2 + \ldots + v_k \), where \(v_i \in V^{\otimes n_i} \) and \(n_i \) the are natural numbers with \(n_i \neq n_j \) if \(i \neq j \), to define multiplication in \(T(V) \), using bilinearity \([1]\), it is enough to define the multiplication \(V^{\otimes m} \times V^{\otimes n} \rightarrow V^{\otimes (m+n)} \). Of course, this is defined by:

\[
(v_1 \otimes \ldots \otimes v_m) \cdot (w_1 \otimes \ldots \otimes w_n) = v_1 \otimes \ldots \otimes v_m \otimes w_1 \otimes \ldots \otimes w_n.
\]

It is important to note that multiplication in \(T(V) \) is not commutative. Also, the unit, \(1 \), of \(T(V) \) is not equal to 1, the unit of the field \(K \). However, in view of the injection \(\iota_0 : K \rightarrow T(V) \), for the sake of notational simplicity, we will denote 1 by 1.

More generally, in view of the injections \(\iota_n : V^{\otimes n} \rightarrow T(V) \), we identify elements of \(V^{\otimes n} \) with their images in \(T(V) \).

Most algebras of interest arise as well-chosen quotients of the tensor algebra \(T(V) \). This is true for the exterior algebra, \(\Lambda^* V \) (also called Grassmann algebra), where we take the quotient of \(T(V) \) modulo the ideal generated by all elements of the form \(v \otimes v \), where \(v \in V \), and for the symmetric algebra, \(\text{Sym} V \), where we take the quotient of \(T(V) \) modulo the ideal generated by all elements of the form \(v \otimes w - w \otimes v \), where \(v, w \in V \). A Clifford algebra may be viewed as a refinement of the exterior algebra, in which we take the quotient of \(T(V) \) modulo the ideal generated by all elements of the form \(v \otimes v - \Phi(v) \cdot 1 \), where \(\Phi \) is the quadratic form associated with a symmetric bilinear form, \(\varphi : V \times V \rightarrow K \), and \(\cdot : K \times T(V) \rightarrow T(V) \) denotes the scalar product of the algebra \(T(V) \). For simplicity, let us assume that we are now dealing with real algebras.

2 Preliminaries

Definition 2.1 Let \(V \) be a real finite-dimensional vector space. A quadratic form on \(V \) is a mapping \(\Phi : V \rightarrow \mathbb{R} \) such that

1. \(\Phi(\lambda v) = \lambda^2 \Phi(v) \) for all \(\lambda \in \mathbb{R} \), \(v \in V \).
2. the mapping \((x, y) \rightarrow (\Phi(x + y) - \Phi(x) - \Phi(y)) = \varphi(x, y)\) of \(V \times V\) into \(\mathbb{R}\) is bilinear.

Then \(\varphi\) is called the bilinear form associated to \(\Phi\).

It is obvious from the definition that \(\varphi\) is symmetric:

\[\varphi(x, y) = \varphi(y, x)\]

and \(\varphi(x, x) = \Phi(x)\).

Two elements \(x, y\) of \(V\) such that \(\varphi(x, y) = 0\) are said to be orthogonal to each other.

Definition 2.2 Let \(V\) be a real finite-dimensional vector space together with a symmetric bilinear form \(\varphi : V \times V \rightarrow \mathbb{R}\), and associated quadratic form, \(\Phi(x) = \varphi(x, x)\). A Clifford algebra associated with \(V\) and \(\Phi\) is a real algebra, \(Cl(V, \Phi)\), together with a linear map, \(i : V \rightarrow Cl(V, \Phi)\) satisfying the condition \((i(v))^2 = \Phi(v)\) for all \(v \in V\) and so that for every real algebra, \(A\), and every linear map, \(f : V \rightarrow A\), with

\[(f(v))^2 = \Phi(v)\] for all \(v \in V\),

there is a unique algebra homomorphism, \(\bar{f} : Cl(V, \Phi) \rightarrow A\) so that

\[f = \bar{f}oi,\]

as in the diagram below:

\[
\begin{array}{ccc}
V & \xrightarrow{i} & Cl(V, \Phi) \\
\downarrow{f} & & \downarrow{\bar{f}} \\
A
\end{array}
\]

We use the notation, \(\lambda u\), for the product of a scalar, \(\lambda \in \mathbb{R}\) and of an element, \(u\), in the algebra \(Cl(V, \Phi)\) and juxtaposition, \(uv\), for the multiplication of two elements, \(u, v \in Cl(V, \Phi)\).
By a familiar argument, any two Clifford algebras associated with V and Φ are isomorphic.

To show the existence of $Cl(V, \Phi)$, observe that $T(V)/U$ does the job, where U is the ideal of $T(V)$ generated by all elements of the form $v \otimes v - \Phi(v).1$, where $v \in V$.

The map $i : V \to Cl(V, \Phi)$ is the composition

$$V \xrightarrow{i_1} T(V) \xrightarrow{\pi} \frac{T(V)}{U}$$

where π is the natural quotient map. We often denote the Clifford algebra $Cl(V, \Phi)$ simply by $Cl(\Phi)$.

Observe that when $\Phi \equiv 0$ is the quadratic form identically zero everywhere, then the Clifford algebra $Cl(V, 0)$ is just the exterior algebra, Λ^*V.

Remark: As in the case of the tensor algebra, the unit of the algebra $Cl(\Phi)$ and the unit of the field \mathbb{R} are not equal.

Since

$$\Phi(u + v) - \Phi(u) - \Phi(v) = 2\varphi(u, v)$$

and

$$(i(u + v))^2 = i(u)^2 + i(v)^2 + i(u)i(v) + i(v)i(u),$$

using the fact that

$$(i(u))^2 = \Phi(u).1,$$

We get:

$$i(u)i(v) + i(v)i(u) = 2\varphi(u, v).1.$$

As a consequence, if (u_1, \ldots, u_n) is an orthogonal basis w.r.t. φ (which means that $\varphi(u_j, u_k) = 0$ for all $j \neq k$), we have:

$$i(u_j)i(u_k) + i(u_k)i(u_j) = 0 \text{ for all } j \neq k.$$
Proposition 2.3 For every vector space, \(V \), of finite dimension \(n \), the map \(i : V \to Cl(\Phi) \) is injective. Given a basis \((e_1, e_2, \ldots, e_n)\) of \(V \) the \(2^n - 1 \) products
\[
i(e_1)i(e_2)\cdots i(e_k), \quad 1 \leq i_1 < i_2 < \ldots < i_k \leq n,
\]
and 1 form a basis of \(Cl(\Phi) \). Thus, \(Cl(\Phi) \) has dimension \(2^n \).

Proof. See [4].

Remark: Since \(i \) is injective, for simplicity of notation, from now on, we write \(u \) for \(i(u) \) Proposition 2.3 implies that if \((e_1, e_2, \ldots, e_n)\) is an orthogonal basis of \(V \), then \(Cl(\Phi) \) is the algebra presented by the generators \((e_1, e_2, \ldots, e_n)\) and the relations
\[
e_j^2 = \Phi(e_j)1, \quad 1 \leq j \leq n, \quad \text{and} \quad e_j e_k = -e_k e_j, \quad 1 \leq j, k \leq n, \quad j \neq k.
\]

In other words, Clifford algebra \(Cl(\Phi) \) consists of certain kinds of "polynomials," linear combinations of monomials of the form \(\sum_j \lambda_j e_J \), where \(J = \{i_1, i_2, \ldots, i_k\} \) is any subset (possibly empty) of \(\{1, \ldots, n\} \) with \(1 \leq i_1 < i_2 < \cdots < i_k \leq n \), and the monomial \(e_j \) is the "product" \(e_{i_1} e_{i_2} \cdots e_{i_k} \).

Definition 2.4 The even-graded elements (the elements of \(Cl^0(\Phi) \)) are those generated by 1 and the basis elements consisting of an even number of factors, \(e_{i_1} e_{i_2} \cdots e_{i_{2k}} \), and the odd-graded elements (the elements of \(Cl^1(\Phi) \)) are those generated by the basis elements consisting of an odd number of factors, \(e_{i_1} e_{i_2} \cdots e_{i_{2k+1}} \).

Remark: we assume that \(\Phi \) is the quadratic form on \(\mathbb{R}^n \) defined by
\[
\Phi(x_1, \ldots, x_n) = -(x_1^2 + \cdots + x_n^2)
\]

Let \(Cl_n \) denote the Clifford algebra \(Cl(\Phi) \).

Example 2.5 \(Cl_1 \) is spanned by the basis \((1, e_1)\). We have
\[
e_1^2 = -1.
\]
Under the bijection
\[e_1 \mapsto i \]
\[Cl_1 \] is isomorphic to the algebra of complex numbers, \(\mathbb{C} \).

Example 2.6 Let \((e_1, e_2)\) be the canonical basis of \(\mathbb{R}^2 \), then \(Cl_2 \) is spanned by the basis by \((1, e_1, e_2, e_1e_2)\). Furthermore, we have:

\[e_2e_1 = -e_1e_2, \quad e_1^2 = -1, \quad e_2^2 = -1, \quad (e_1e_2)^2 = -1. \]

Under the bijection
\[e_1 \mapsto i, \quad e_2 \mapsto j, \quad e_1e_2 \mapsto k, \]
it is easily checked that the quaternion identities

\[i^2 = j^2 = k^2 = -1, \quad ij = -ji = k, \quad jk = -kj = i, \quad ki = -ik = j. \]

hold, and thus, \(Cl_2 \), is isomorphic to the algebra of quaternions, \(\mathbb{H} \).

Definition 2.7 For every non degenerate quadratic form \(\Phi \) over \(\mathbb{R} \) there is an orthogonal basis with respect to which \(\Phi \) is given by

\[\Phi(x_1, \ldots, x_{p+q}) = x_1^2 + \cdots + x_p^2 - (x_{p+1}^2 + \cdots + x_{p+q}^2) \]

where \(p \) and \(q \) only depend on \(\Phi \). The quadratic form corresponding to \((p, q)\) is denoted \(\Phi_{p,q} \) and we call \((p, q)\) the signature of \(\Phi_{p,q} \). Let \(n = p+q \) We denote the Clifford algebra associated with \(\mathbb{R}^n \) and \(\Phi_{p,q} \) where has \(\Phi_{p,q} \) signature \((p, q)\) by \(Cl_{p,q} \). Note that with this new notation, \(Cl_n = Cl_{0,n} \).

Example 2.8 Let \(Cl_{p,q} = Cl(\mathbb{R}^{p+q}, \Phi_{p,q}) \), where \(\Phi \) has signature \((p, q)\), and orthonormal basis is written as \(\{e_1, \ldots, e_p, \varepsilon_1, \ldots, \varepsilon_q\} \) where \(e_1^2 = \cdots = e_p^2 = 1, \varepsilon_1^2 = \cdots = \varepsilon_q^2 = -1 \).
\[... = \varepsilon_q^2 = -1. \] Thus, we have:

\[Cl_{1,0} = \mathbb{R} \oplus \mathbb{R} \quad \text{with} \quad e_1 = \pm 1; \]

\[Cl_{0,1} = \mathbb{C}; \quad \text{with} \quad \varepsilon_1 = i; \]

\[Cl_{2,0} = M_2(\mathbb{R}), \quad \text{with} \quad e_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e_1 e_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \]

\[Cl_{0,2} = \mathbb{H}, \quad \text{with} \quad \varepsilon_1 = i \quad \varepsilon_2 = j, \quad \varepsilon_1 \varepsilon_2 = k; \]

\[Cl_{1,1} = M_2(\mathbb{R}), \quad \text{with} \quad e_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad e_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad e_1 e_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

3 Main Results

It turns out that the real algebras \(Cl_{p,q} \) can be build up as tensor products of the basic algebras \(\mathbb{R}, \mathbb{C} \) and \(\mathbb{H} \). According to [6], the description of the real algebras \(Cl_{p,q} \) as matrix algebras and the 8-periodicity was first discovered by Elie Cartan in 1908. Of course, Cartan used a very different notation. These facts were rediscovered independently by [2] in the 1960's (see Raoul Bott's comments in Volume 2 of his Collected papers.).

As mentioned in Example 2.3, we have:

\[Cl_{0,1} = \mathbb{C}, \quad Cl_{0,2} = \mathbb{H}, \quad Cl_{1,0} = \mathbb{R} \oplus \mathbb{R}, \quad Cl_{2,0} = M_2(\mathbb{R}), \]

And

\[Cl_{1,1} = M_2(\mathbb{R}). \]

The key to the classification is the following lemma:

Lemma 3.1 We have the isomorphisms

\[Cl_{0,n+2} \approx Cl_{n,0} \otimes Cl_{0,2} \]

\[Cl_{n+2,0} \approx Cl_{0,n} \otimes Cl_{2,0} \]

\[Cl_{p+1,q+1} \approx Cl_{p,q} \otimes Cl_{1,1} \]

for all \(n, p, q \geq 0 \).
Proof. Let $\Phi_{0,n+2}(x) = -\|x\|^2$, where $\|x\|$ is the standard Euclidean norm on \mathbb{R}^{n+2}, and let (e_1, \ldots, e_{n+2}) be an orthonormal basis for \mathbb{R}^{n+2} under the standard Euclidean inner product. We also let (e'_1, \ldots, e'_n) be a set of generators for $Cl_{0,0}$ and (e''_1, e''_2) be a set of generators for $Cl_{0,2}$. We can define a linear map $f : \mathbb{R}^{n+2} \to Cl_{0,0} \otimes Cl_{0,2}$ by its action on the basis (e_1, \ldots, e_{n+2}) as follows:

$$f(e_i) = \begin{cases} e'_i \oplus e''_2 & 1 \leq i \leq n \\ 1 \oplus e''_{i-n} & n + 1 \leq i \leq n + 2 \end{cases}$$

Observe that for $1 \leq i, j \leq n$ we have

$$f(e_i) f(e_j) + f(e_j) f(e_i) = (e'_i e'_j + e'_j e'_i) \otimes (e''_1 e''_2)^2 = -2\delta_{ij} 1 \otimes 1,$$

Since $(e''_2)^2 = (e''_1)^2 = -1, e'_1 e'_2 = -e''_2 e''_1$ and $e'_i e'_j = -\delta_{ij} e'_i$, for all $i \neq j$, and $(e'_i)^2 = 1$, for all i with $1 \leq i \leq n$. Also for $n + 1 \leq i, j \leq n + 2$ we have

$$f(e_i) f(e_j) + f(e_j) f(e_i) = 1 \otimes (e''_{i-n} e''_{j-n} + e''_{j-n} e''_{i-n}) = -2\delta_{ij} 1 \otimes 1,$$

and

$$f(e_i) f(e_k) + f(e_k) f(e_i) = 2e'_i \otimes (e''_1 e''_{k-n} + e''_{k-n} e''_1) = 0,$$

for all $1 \leq i, j \leq n$ and $n + 1 \leq k \leq n + 2$ (since $e''_{k-n} = e''_1$ or $e''_{k-n} = e''_2$). Thus, we have:

$$f(x)^2 = -\|x\|^2.1 \otimes 1 \quad for \ all \ x \in \mathbb{R}^{n+2},$$

and by the universal mapping property of $Cl_{0,n+2}$, we get an algebra map:

$$\tilde{f} : Cl_{0,n+2} \to Cl_{0,0} \otimes Cl_{0,2}.$$

Since \tilde{f} maps onto a set of generators, it is surjective. However,

$$\dim(Cl_{0,n+2}) = 2^{n+2} = 2^n.2 = \dim(Cl_{0,0})\dim(Cl_{0,2}) = \dim(Cl_{0,0} \otimes Cl_{0,2})$$

and \tilde{f} is an isomorphism.

The proof of the second identity is analogous. For the third identity, we have:

$$\Phi_{p,q}(x_1, \ldots, x_{p+q}) = x_1^2 + \cdots + x_p^2 - (x_{p+1}^2 + \cdots + x_{p+q}^2),$$

www.SID.ir
And let \((e_1, \ldots, e_{p+1}, \varepsilon_1, \ldots, \varepsilon_{q+1})\) be an orthogonal basis for \(\mathbb{R}^{p+q+2}\) so that \(\Phi_{p+1,q+1}(e_i) = +1\) and \(\Phi_{p+1,q+1}(\varepsilon_j) = -1\) for \(i = 1, \ldots, p+1\) and \(j = 1, \ldots, q+1\). Also, let \((e'_1, \ldots, e'_p, \varepsilon'_1, \ldots, \varepsilon'_q)\) be a set of generators for \(\mathbb{C}l_{p,q}\) and \((e''_1, \varepsilon''_1)\) be a set of generators for \(\mathbb{C}l_{1,1}\). We define a linear map \(f : \mathbb{R}^{p+q+2} \rightarrow \mathbb{C}l_{p,q} \otimes \mathbb{C}l_{1,1}\) by its action on the basis as follows:

\[
f(e_i) = \begin{cases}
e'_i \otimes \varepsilon'_1 \varepsilon''_1 & 1 \leq i \leq p \\
1 \otimes \varepsilon''_1 & i = p + 1
\end{cases} \quad \text{and} \quad f(\varepsilon_j) = \begin{cases}
e''_j \otimes e'_1 \varepsilon''_1 & 1 \leq j \leq q \\
1 \otimes \varepsilon''_1 & j = q + 1
\end{cases}
\]

We can check that

\[f(x)^2 = \Phi_{p+1,q+1}(x) \otimes 1 \quad \text{for all} \quad x \in \mathbb{R}^{p+q+2},\]

and we finish the proof as in the first case.

To apply this lemma, we need some further isomorphisms among various matrix algebras.

Proposition 3.2 The following isomorphisms hold:

\[
\begin{align*}
M_m(\mathbb{R}) \otimes M_n(\mathbb{R}) & \cong M_{mn}(\mathbb{R}) \quad \text{for all} \quad m, n \geq 0 \\
M_n(\mathbb{R}) \otimes R_k & \cong M_n(k) \quad \text{for all} \quad K = \mathbb{C} \text{ or } K = \mathbb{H} \text{ and all} \quad n \geq 0 \\
\mathbb{C} \otimes \mathbb{C} & \cong \mathbb{C} \oplus \mathbb{C} \\
\mathbb{C} \otimes \mathbb{H} & \cong M_4(\mathbb{C})
\end{align*}
\]

Proof. See[5].

Proposition 3.3 (Cartan/Bott) For all \(n \geq 0\) we have the following isomorphisms:

\[
\begin{align*}
\mathbb{C}l_{0,n+8} & \cong \mathbb{C}l_{0,n} \otimes \mathbb{C}l_{0,8} \\
\mathbb{C}l_{n+8,0} & \cong \mathbb{C}l_{n,0} \otimes \mathbb{C}l_{8,0}
\end{align*}
\]

Furthermore,

\[
\mathbb{C}l_{0,8} = \mathbb{C}l_{8,0} = M_{16}(\mathbb{R}).
\]
Proof. By Lemma 3.1 we have the isomorphisms:

\[Cl_{0,n+2} \approx Cl_{n,0} \otimes Cl_{0,2}, \quad Cl_{n+2,0} \approx Cl_{0,n} \otimes Cl_{2,0}, \]

and thus,

\[Cl_{0,n+8} \approx Cl_{n+6,0} \otimes Cl_{0,2} \approx Cl_{0,n+4} \otimes Cl_{2,0} \otimes Cl_{0,2} \approx \cdots \approx Cl_{0,n} \otimes Cl_{2,0} \otimes Cl_{0,2} \otimes Cl_{0,2}. \]

Since \(Cl_{0,2} = H \) and \(Cl_{2,0} = M_2(\mathbb{R}) \), by Proposition 3.1, we get:

\[Cl_{2,0} \otimes Cl_{0,2} \otimes Cl_{2,0} \otimes Cl_{0,2} \approx H \otimes H \otimes M_2(\mathbb{R}) \otimes M_2(\mathbb{R}) \approx M_4(\mathbb{R}) \otimes M_4(\mathbb{R}) \approx M_{16}(\mathbb{R}). \]

The second isomorphism is proved in a similar fashion.

Lemma 3.4 \(Cl_{p+4,q} \approx Cl_{p,q} \otimes M_2(\mathbb{H}) \approx Cl_{p,q+4} \).

Proof. We will prove the first isomorphism. Take \(A = Cl_{p,q} \otimes M_2(\mathbb{H}) \), define

\[
\begin{align*}
 f(e_r) &= e_r' \otimes \begin{pmatrix} 0 & -k \\ k & 0 \end{pmatrix}, \quad r = 1, \ldots, p, \\
 f(\varepsilon_s) &= \varepsilon_s' \otimes \begin{pmatrix} 0 & -k \\ k & 0 \end{pmatrix}, \quad s = 1, \ldots, q,
\end{align*}
\]

and on the remaining four basic vectors, define

\[
\begin{align*}
 f(e_{p+1}) &= 1 \otimes \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \\
 f(e_{p+2}) &= 1 \otimes \begin{pmatrix} 0 & -j \\ j & 0 \end{pmatrix}, \\
 f(e_{p+3}) &= 1 \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \\
 f(e_{p+4}) &= 1 \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\end{align*}
\]

From all this, we can deduce the following Theorem:

Theorem 3.5 For \(0 \leq p \leq 8 \) and \(8 \leq q \leq 13 \) matrix representations of the Clifford
algebras $Cl_{p,q}$ are exhibited in the following table:

<table>
<thead>
<tr>
<th>q</th>
<th>p</th>
<th>$M_{16}(\mathbb{R})$</th>
<th>$M_{16}(\mathbb{C})$</th>
<th>$M_{16}(\mathbb{H})$</th>
<th>$M_{16}(\mathbb{H}) \oplus M_{16}(\mathbb{H})$</th>
<th>$M_{32}(\mathbb{H})$</th>
<th>$M_{64}(\mathbb{H})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>$M_{16}(\mathbb{R}) \oplus M_{16}(\mathbb{R})$</td>
<td>$M_{32}(\mathbb{R})$</td>
<td>$M_{32}(\mathbb{C})$</td>
<td>$M_{32}(\mathbb{H})$</td>
<td>$M_{32}(\mathbb{H}) \oplus M_{32}(\mathbb{H})$</td>
<td>$M_{64}(\mathbb{H})$</td>
<td>$M_{128}(\mathbb{H})$</td>
</tr>
<tr>
<td></td>
<td>$M_{32}(\mathbb{R}) \oplus M_{32}(\mathbb{R})$</td>
<td>$M_{64}(\mathbb{R})$</td>
<td>$M_{64}(\mathbb{C})$</td>
<td>$M_{64}(\mathbb{H}) \oplus M_{64}(\mathbb{H})$</td>
<td>$M_{64}(\mathbb{H}) \oplus M_{64}(\mathbb{H})$</td>
<td>$M_{128}(\mathbb{H}) \oplus M_{128}(\mathbb{H})$</td>
<td>$M_{512}(\mathbb{H})$</td>
</tr>
<tr>
<td></td>
<td>$M_{64}(\mathbb{R}) \oplus M_{64}(\mathbb{R})$</td>
<td>$M_{128}(\mathbb{R})$</td>
<td>$M_{128}(\mathbb{C})$</td>
<td>$M_{128}(\mathbb{H}) \oplus M_{128}(\mathbb{H})$</td>
<td>$M_{128}(\mathbb{H}) \oplus M_{128}(\mathbb{H})$</td>
<td>$M_{256}(\mathbb{H}) \oplus M_{256}(\mathbb{H})$</td>
<td>$M_{1024}(\mathbb{H})$</td>
</tr>
<tr>
<td></td>
<td>$M_{128}(\mathbb{R}) \oplus M_{128}(\mathbb{R})$</td>
<td>$M_{256}(\mathbb{R})$</td>
<td>$M_{256}(\mathbb{C})$</td>
<td>$M_{256}(\mathbb{H}) \oplus M_{256}(\mathbb{H})$</td>
<td>$M_{256}(\mathbb{H}) \oplus M_{256}(\mathbb{H})$</td>
<td>$M_{512}(\mathbb{C}) \oplus M_{512}(\mathbb{C})$</td>
<td>$M_{1024}(\mathbb{C})$</td>
</tr>
<tr>
<td></td>
<td>$M_{256}(\mathbb{R}) \oplus M_{256}(\mathbb{R})$</td>
<td>$M_{512}(\mathbb{R})$</td>
<td>$M_{512}(\mathbb{C})$</td>
<td>$M_{512}(\mathbb{H}) \oplus M_{512}(\mathbb{H})$</td>
<td>$M_{512}(\mathbb{H}) \oplus M_{512}(\mathbb{H})$</td>
<td>$M_{1024}(\mathbb{C})$</td>
<td>$M_{1024}(\mathbb{C})$</td>
</tr>
</tbody>
</table>

Remark: A table of the Clifford algebras $Cl_{p,q}$ for $0 \leq p, q \leq 7$ can be found in [7].

Lemma 3.6 We have the isomorphisms

$$Cl_{p,q} \cong Cl_{p+q+1}^0$$

$$Cl_{p+1,q}^0 \cong Cl_{q,p}$$

$$Cl_{p+1,q}^0 \cong Cl_{q+1,p}$$

for all $p, q \geq 0$.

Proof. Let $(e_1, \ldots, e_p, \varepsilon_1, \ldots, \varepsilon_q)$ be an orthonormal basis for \mathbb{R}^{p+q}, We also let $(e'_1, \ldots, e'_p, \varepsilon'_1, \ldots, \varepsilon'_{q+1})$ be a set of generators for $Cl_{p,q+1}$. We can define a linear map $f : \mathbb{R}^{p+q} \to Cl_{p,q+1}^0$ by its action on the basis $(e_1, \ldots, e_n, \varepsilon_1, \ldots, \varepsilon_q)$ as follows:

$$f(e_i) = e'_i e'_{q+1} \quad i = 1, \ldots, p,$$

$$f(\varepsilon_j) = \varepsilon'_j e'_{q+1} \quad j = 1, \ldots, q.$$

We have

$$f(e_i) f(e_j) + f(e_j) f(e_i) = e'_i e'_{q+1} e'_j e'_{q+1} + e'_j e'_{q+1} e'_i e'_{q+1} = e'_i e'_j + e'_j e'_i = 2\delta_{ij},$$

And

$$f(\varepsilon_i) f(\varepsilon_j) + f(\varepsilon_j) f(\varepsilon_i) = e'_i e'_{q+1} e'_j e'_{q+1} + e'_j e'_{q+1} e'_i e'_{q+1} = e'_i e'_j + e'_j e'_i = -2\delta_{ij},$$
And also
\[
f(e_i)f(\varepsilon_j) + f(e_i)f(\varepsilon_j) = e'_i\varepsilon'_{q+1}\varepsilon'_j + \varepsilon'_j e'_q e'_{q+1} = e'_i\varepsilon'_j + \varepsilon'_j e'_i = 0.\]

Thus, by the universal mapping property of $\text{Cl}_{p,q}$, we get an algebra map:
\[
\tilde{f} : \text{Cl}_{p,q} \rightarrow \text{Cl}_{p,q+1}^0.
\]

Since \tilde{f} maps onto a set of generators, it is surjective. However,
\[
dim(\text{Cl}_{p,q+1}^0) = \frac{2p+q+1}{2} = 2p+q = \dim(\text{Cl}_{p,q})
\]
and \tilde{f} is an isomorphism.

For the second identity we define $f : \mathbb{R}^{q+p} \rightarrow \text{Cl}_{p+1,q}^0$ on basic vectors by:
\[
f(e_r) = e'_r e'_{p+1}, \quad r = 1, \ldots, q,
\]
\[
f(\varepsilon_s) = \varepsilon'_s e'_{p+1}, \quad s = 1, \ldots, p.
\]

Then
\[
f(e_r)^2 = e'_r e'_{p+1} e'_r e'_{p+1} = -e'^2_r e'^2_{p+1} = -1,
\]
\[
f(\varepsilon_s)^2 = \varepsilon'_s e'_{p+1} \varepsilon'_s e'_{p+1} = -\varepsilon'^2_s e'^2_{p+1} = -1,
\]

The rest of the proof is like the previous part. For the third identity, according to the previous parts, we have:
\[
\text{Cl}_{p+1,q} \approx \text{Cl}_{p+1,q+1}^0 \approx \text{Cl}_{q+1,p}.
\]

Corollary: $\text{Cl}_{p,q}^0 \approx \text{Cl}_{q,p}^0$.

References

