Mineralization, geochemistry, fluid inclusion and sulfur stable isotope studies in the carbonate hosted Baqoroq Cu-Zn-As deposit (NE Anarak)

Mohammad Ali Jazi, Mohammad Hassan Karimpour and Azadeh Malekzadeh Shafaroudi

Research Center for Ore Deposit of Eastern Iran, Ferdowsi University of Mashhad, Mashhad, Iran

Submitted: Apr. 21, 2015
Accepted: Oct. 3, 2015

Keywords: Copper, Fluid inclusions, Sulfur isotopes Baqoroq, Anarak.

Introduction
The Baqoroq Cu-Zn-As deposit is located northeast of the town of Anarak in Isfahan province, in the east central area of Iran. Copper mineralization occurs in upper cretaceous carbonate rocks. Study of the geology of the Nakhlak area, the location of a carbonate-hosted base metal deposit, indicates the importance of stratigraphic, lithological and structural controls in the placement of this ore deposit. (Jazi et al., 2015). Some of the most world’s most important epigenetic, stratabound and discordant copper deposits are the carbonate-hosted Tsumeb and Kipushi type deposits, located in Africa. The Baqoroq deposit is believed to be of this type.

Materials and methods
In the current study, fifty rock samples were collected from old tunnels and surface mineralization. Twenty-two thin sections, ten polished sections, and four thin-polished sections were prepared for microscopic study. Ten samples were selected for elemental analysis by ICP-OES (Inductively coupled plasma optical emission spectrometry) by the Zar Azma Company (Tehran) and AAS (Atomic absorption spectrometry) at the Ferdowsi University of Mashhad. Seven doubly polished sections of barite mineralization were prepared for microthermometric analysis. Homogenization and last ice-melting temperatures were measured using a Linkam THMSG 600 combined heating and freezing stage at Ferdowsi University of Mashhad. Sulfur isotopes of five barite samples were determined by the Iso-Analytical Ltd. Company of the UK. The isotopic ratios are presented in per mil (‰) notation relative to the Canyon Diablo Troilite.

Results
The upper Cretaceous host rocks of the Baqoroq deposit include limestone, sandstone, and conglomerate units. Mineralization is controlled by two main factors: lithostratigraphy and structure. Epigenetic Cu-Zn mineralization occurs in ore zones as stratabound barite and barite-calcite veins and minor disseminated mineralization. Open space filling occurred as breccia matrix, crustification banding, and botryoidal texture. The host rock has undergone dolomitization alteration. Hypogene minerals include chalcopyrite, pyrite, sphalerite, galena, enargite, barite, and calcite. Supergene minerals include malachite, azurite, covellite, chrysocolla, chalcocite, cerussite, smithsonite, native copper and iron oxide minerals. Sulfantimonides and sulfardenides are abundant in low- and moderate temperature stages of the deposit, while bismuth sulfides generally occur in higher temperature ores, according to Malakhov, 1968.

Analysis of rich ore samples indicates copper is the most abundant heavy metal in the ore (average 20.28 wt%), followed by zinc (average ~ 1 wt%) and arsenic (average ~ 1 wt%), respectively. The presence of many trace elements in the ore, such as Sb, Pb, Ag and V, are very important. Element pairs such as Ag-Cu, Zn-Cd, Zn-Sb, Fe-V and Pb-Mo are correlated with each other. The Baqoroq ore minerals are rich in As, Sb and poor in Bi. Highamountsof antimony usually occur in a low temperature stage (Marshall and Joensuu, 1961). Malakhov (1968) suggested that high Sb/Bi ratio in the ore indicates a low temperature of formation for the Baqoroq deposit.

*Corresponding authors Email: kaimpur@um.ac.ir
Sulfide mineralization fluids were found to have homogenization temperatures between 259 and 354°C and salinities between 8.37 and 13.18 wt% NaCl eq. Surface water apparently diluted ore-bearing fluids in the final stages and deposited sulfide-free calcite veins at relatively low temperatures (78 to 112 °C) and low salinities (3.59 to 6.07 wt% NaCl eq.).

The δ34S values of barite of the Baqoroq deposit range from +13.1 to +14.37‰ from which δ34S values of ore fluids were calculated to vary between -8.57‰ and -7.23‰. Sulfur within natural environments is derived ultimately from either igneous or seawater sources (Ohmoto and Rye, 1979). Barite δ34S values of Baqoroq deposit lie within the range of Cretaceous-age oceanic sulfate values. The reduction of sulfate to sulfide could have been caused either by bacterial sulfate reduction or by nonbacterial sulfate reduction through a reaction with organic material in the sedimentary rocks (thermochemical sulfate reduction). However, the narrow range of δ34S and positive values indicates that they were not produced by bacterial sulfate reduction. Partial thermochemical reduction of sulfates has apparently produced light sulfur values (~ 21‰ lighter) and it has been effective in the deposition of ore minerals. Organic matter occurs as graphite in the Baqoroq formation in proximity of Baqoroq deposit (Cherepovsky et al., 1982).

Discussion
Epigenetic, stratabound and discordant Cu-Zn-As mineralization in the Baqoroq deposit occurs as open space filling of upper Cretaceous rocks. Host rock is partially dolomitized by ascending warm, saline fluids. Seawater sulfates were the source of the sulfides sulfur and the sulfate in the barite. The reduced sulfur was generated by partial thermochemical reduction and it was effective in the deposition of the ore minerals. Based on the evidence of carbonate host rocks, the absence of igneous activity, the open space filling texture, mineralogy, dolomite alteration, ore geochronology (As and Sb high content and absence of Bi), microthermometric data of ore bearing fluid and sulfur isotope values, the Baqoroq deposit is very similar to the carbonate hosted copper deposits in Africa and in particular the Tsumeb deposit in Namibia. The Baqoroq deposit may have been produced by metamorphic fluids during orogeny related to the closure of the Neo-Tethys ocean.

References