Investigation in Effect of Fourfold Parameters on Preparation of 166Ho Radiopharmaceutical

Mehdi Mohebali¹, Hojatolah Salehi², Dariush Sardari¹, Masomeh Zoghi², Maghsoud Gourani² and Hosein Abbasi²

1- Islamic Azad University, Science and Research Branch, Tehran, Iran.
2-Nuclear Science Research School, NSTRI, AEOI, Iran.

Radiopharmaceuticals are now increasingly used for therapy of cancer, palliation of pain secondary to bone metastasis and for the treatment of rheumatoid arthritis. 166Ho (n,γ) 166Ho is currently used for radiotherapy due to its attractive properties which include emission of high energy β- particles $(E_{\beta-1}=1855$ Kev (51%), $E_{\beta-2}=1776$ Kev (48%) and $E_{ave}=666$ Kev), an appropriate physical half-life of 26.4 h and decay to stable daughter. In this research holmium oxide (Ho₂O₃, purity > 99.9%) was irradiated in Tehran research reactor (TRR) and four parameters mass, thermal neutron flux (ϕ), bombarding time (t_b) and cooling time (t_c) were investigated. The best conditions for producing of 166Ho were achieved $(m=2$ mg, $\phi=5.7\times10^{13}$ n/cm².s, $t_b=8$ h, $t_c=40$ h, correction factor 92%).

Neutron activation; Holmium; Correction factor; Thermal neutron flux.

* Corresponding Author; E. mail: mohebali_2121@yahoo.com
Introduction

Inherent determinants in developing therapeutic radiopharmaceuticals are the choice of radionuclide, local production condition and carrier molecule. The radionuclide should emit sufficient useful destructive radiation and remain in the target site, which depends mainly on the carrier molecule biokinetics.

For therapeutic purpose, the selection of a suitable radioisotope should take into account not only the physicals characteristics (type of energy, range and half-life), but also the specificity of localization and pharmacokinetics [1].

The use of beta particles emitter have a distinct advantage over gamma emitter in that beta particles have a limited penetration in tissue, a highly homogeneous radiation dose and a significantly lower dose delivery beyond target tissue than that induced by gamma rays [2].

The physical properties of 166Ho make this radioisotope attractive for therapeutic applications: high energy beta particles ($E_{av}=666$ kev), low intensity and low energy gamma rays (80.5 kev, 6%) suitable for imaging, 26.4 h half-life and stable daughter 166Er. In particular, 166Ho can be readily produced using a low or medium flux research reactor because the thermal neutron cross section of this radioisotope is 63.5 ± 3.5 barn [2,3]. This radioisotope is one of the new generation radiopharmaceuticals and because of good characteristics, its use as a therapeutic agent is increased.

Turner et al. (1994) used the 81 kev–gamma emission of 166Ho to determine, by SPECT imaging, the beta dose absorbed by normal liver of pigs administered with 166Ho micro-spheres in intra-hepatic artery [4].

166Ho has different therapeutic applications. For example DTPA is labeled with 166Ho to prevent restenosis in angioplasty balloons. This radioisotope also used for decreasing the pain of bone cancer and treatment of skin cancers [5,6,7].

Generally there are two methods for production of 166Ho:

- Indirect neutron activation: in which the stable nuclide 164Dy with abundance of 25% is used as the target in the reactor (164Dy (n, γ) 165Dy (n, γ) 166Dy (β)166Ho).

- Direct neutron activation: in which the stable nuclide 166Ho with abundance of 100% is used as the target in the reactor (166Ho (n, γ)166Ho).

Respecting to the low abundance of 164Dy and significant by-product impurities of first method, in this research for the first time in Iran the possibility and improvement of 166Ho production was investigated by direct activation method.

Experimental

Materials and method

Materials: natural holmium powder with 99.9% purity in the form of Ho$_2$O$_3$, as a bombardment target, curiometer Amersham CRC-12, quartz ampoules, aluminum cans.

Method: Ho$_2$O$_3$ powder (99.9% purity) was poured into the quartz ampoules and the ampoules were sealed by heating. Then each ampoule placed in aluminum can. In the next step the cans were placed in different positions of Tehran research reactor (TRR). In direct neutron activation method, the theoretical activity can be calculated as follows [8]:

$$A (mCi) = \frac{1}{3.7 \times 10^{-7}} \frac{m \sigma \phi N}{M} \left[1 - e^{-\lambda t_0} \right] e^{-\lambda t},$$ \hspace{1cm} (1)$$

where m is the mass of the holmium powder samples, ϕ is the neutron flux of the reactor, t_0 is the bombarding
time of the samples in the reactor, t_c is the cooling time of the samples, M is atomic weigh of the holmium and N_a is Avogadro number.

To measure the practical activity of the samples after cooling, Amersham CRC-12 curiemeter was used. This curiemeter was daily calibrated with 137Cs standard source, so the measured activity had good precision [9].

In order to obtain the optimum parameters, the effect of four main parameters (flux, mass, bombarding time, cooling time) on the activity of the samples were investigated:

Investigation of flux effect: Five samples of 165Ho$_2$O$_3$ under the same condition ($m=1.5$ mg, $t_b=2$ h, $t_c=30$ h) were placed into the five different positions in Tehran research reactor (TRR).

Investigation of mass: Six samples of 165Ho$_2$O$_3$ with different masses ($min=0.5$mg, $max=3$mg incriminate 0.5) were bombarded under the same conditions ($t_b=2$ h, $t_c=40$ h, $\phi=5.7\times10^{13}$ n/cm2.s).

Investigation of bombarding time: For this purpose four samples of 165Ho$_2$O$_3$ under the same conditions ($t_c=50$ h, $m=1.5$ mg, $\phi=5.7\times10^{13}$ n/cm2.s) were bombarded for 2, 4, 6 and 8 hours.

Investigation of cooling time: Six samples under the same conditions ($m=1.5$ mg, $t_b=2$ h, $\phi=5.7\times10^{13}$ n/cm2.s) were cooled for 10, 20, 30, 40, 60 and 80 hours.

Results

After applying the above conditions, the activity of the samples for each condition was measured by Amersham CRC-12 curiemeter. The results are shown in Tables 1-4:

Table 1- The activity of 165Ho$_2$O$_3$ in different fluxes.

<table>
<thead>
<tr>
<th>$\phi\times10^{13}$</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>5.7</th>
<th>5.94</th>
<th>6.5</th>
<th>8.04</th>
<th>9.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity (mCi)</td>
<td>3.3</td>
<td>6.8</td>
<td>6.4</td>
<td>6.7</td>
<td>10.6</td>
<td>10.68</td>
<td>12.4</td>
<td>14.2</td>
<td>18.5</td>
</tr>
</tbody>
</table>

$m=1.5$ mg, $t_b=2$ h, $t_c=30$ h

**Table 2- The activity of different amount of 165Ho$_2$O$_3$.

<table>
<thead>
<tr>
<th>Mass (mg)</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>1.9</th>
<th>2</th>
<th>2.5</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity (mCi)</td>
<td>2.9</td>
<td>4.46</td>
<td>7.86</td>
<td>11.01</td>
<td>11.87</td>
<td>13.9</td>
<td>17.7</td>
</tr>
</tbody>
</table>

$bombarding$ $t_b=2$ h, $t_c=40$ h, $\phi=5.7\times10^{13}$ n/cm2.s

Table 3- The activity of 165Ho$_2$O$_3$ at different bombarding times.

<table>
<thead>
<tr>
<th>Bombarding time (hour)</th>
<th>2</th>
<th>4.75</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity (mCi)</td>
<td>4.1</td>
<td>9.44</td>
<td>10.72</td>
<td>15.9</td>
</tr>
</tbody>
</table>

$cooling$ $t_c=50$ h, $m=1.5$ mg, $\phi=5.7\times10^{13}$ n/cm2.s

Table 4- The activity of 165Ho$_2$O$_3$ at different cooling times.

<table>
<thead>
<tr>
<th>Cooling time (hour)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity (mCi)</td>
<td>24.91</td>
<td>19.47</td>
<td>13.59</td>
<td>11.87</td>
<td>8.51</td>
<td>5.88</td>
<td>3.5</td>
</tr>
</tbody>
</table>

$m=1.5$ mg, $t_b=2$ h, $\phi=5.7\times10^{13}$ n/cm2.s

Discussion

Due to the low purity of 164Dy in indirect neutron activation method for producing 166Ho, the impurity of the product is very high and the purification of 166Ho is costly and time consuming [15]. In comparison with this method, the product of direct neutron activation method, has high purity. This can be shown by performing gamma spectroscopy.
As Figure 1 shows the only product of this method which is 166Ho and it is not necessary to perform any purification.

In order to compare the measured activity with that calculated, these two series were plotted in the same coordinate system. Figures 2-5 show such a comparison:

Flux effect: Figure 2 shows the relationship between the thermal neutron flux and activity of Holmium-166. Comparing the measured and calculated activities one finds a linear relationship between flux and activity, an the other hand, for the flux 5.7×10^{13} n/cm2s, minimum difference between...
the measured activity and the calculated activity of 166Ho is obtained.

Mass effect: Figure 3 indicates the relationship between the mass of samples with activity of Holmium-166. Comparison of the measured activity and calculated activity indicates a linear relationship between mass and activity. In addition, Minimum difference between measured activity and calculated activity corresponds to 2 mg of the sample.

Bombarding time effect: The obtained results show the exponential relationship between activity and bombarding time in form of $A \propto (1 - e^{-\lambda t})$. Using the Mc Lauren form of e^{-x}, this dependency becomes a polynomial in order of 3 and after regression the R-squared value equals one (Figure 3).

Cooling time effect: The results obtained using Equation 1 show the exponential reduction of activity (Figure 4).

As the figures show the activity induced in the target under irradiation will be less than the activity calculated using the above equation, due to several factors, such as:
- Self shielding effect in the target,
- Power variation in the reactor,
- Flux depression due to adjacent samples in the reactor, especially when such samples are high neutron absorbers,
- Burn up of the target material with time, and
- Destruction of the product nucleus due to subsequent neutron capture [10].

Thus a correction factor for neutron activation should be defined as below:

$$K_F = \frac{\text{measured activity}}{\text{calculated activity}} \quad (2)$$

In investigation of each parameter the KF value varies between 84% and 98% which the min value 92% has considered for all of samples. After using this factor for calculated activity the difference between calculated and measured values becomes lower.

Conclusion

According to the obtained results, the best conditions for producing of 166Ho are as follow: $m=2 \text{ mg}$, $\varphi=5.7 \times 10^{13} \text{ n/cm}^2 \cdot \text{s}$, $t_b=8 \text{ h}$, $t_c=40 \text{ h}$. In this condition, the difference between calculated and measured value become as low as possible and production factors are repeatable.

Acknowledgment

The authors express their thanks to Mr. Pour beigi and Mr. Rabiee for supporting this work.

References

[9] Amersham; Owners manual of radioisotope calibrator; CRC-12, CAPINTEC INC.; 540 ALPHA, DRIVE, PITTSBURGH; PA 15238.

