Evaluation of Spirometry Parameters and Clinical Symptoms in Tobacco-Industry Workers Exposed to Dust in Tobacco Factory

Jamaati HR¹, Azimi-nejad M², Boloory A², Azar-Khish K¹, Masjedi MR¹
¹Department of Pulmonary Medicine,NRITLD,Shaheed Beheshti University of Medical Sciences and Health Services
²Department of Occupational Medicine

ABSTRACT
Background: Despite the fact that many surveys have been carried out on adverse effects of tobacco and diseases attributable to smoking, only a few studies have described the effects of tobacco dust in tobacco-industry workers.

Materials and Methods: A total of 487 nonsmoking factory workers were randomly selected from different sections of the factory for this cross-sectional study. Having completed the questionnaire, they underwent spirometry and other examinations including DLCO, TLC, chest X-ray, and CT scan.

Results: Five cases developed COPD (1.27%) of whom 4 (0.96%) were working in cigarette fabricating section. Of 8 patients with asthma (1.92%), 3(0.72%) worked in an area where cigarettes were fabricated. Restrictive disorders were reported in 6 workers (1.42%) of whom 2 were in the sorting-blending and fabricating sections (0.48%) and 1 in tobacco packaging (0.24%) section.

Conclusion: The results implied high prevalence of obstructive disorders in the workers of cigarette fabricating section. We have concluded that working in different sections of a cigarette factory and also working experience have no significant relationship with pulmonary disorders and radiologic appearance of nonsmoking workers.

(Tanaffos 2002;1(1),41-45)

Keywords: Spirometry parameters, Tobacco-industry worker.

INTRODUCTION

Prior investigators have shown the deleterious effects of smoking and/or exposure to tobacco smoke; nevertheless, studies addressed the chronic effects of tobacco dust on tobacco-industry workers are scare (1,2).Green tobacco leaf is among the leading causes of occupational asthma in cigarette factories (3).Pulmonary function tests have shown considerable decrease in diffusion capacity values and expiratory flow rate of the subjects exposed to tobacco dust(4).On the other hand, the fungi growing on tobacco leaves such as aspergillus, induce hypersensitivity pneumonitis among tobacco workers (5).
Tobacco dust contaminated with different types of fungi, cause conjunctivitis with dryness and inflammation of nasopharyngeal mucosa among workers (5-7).

A group of 75 tobacco workers were matched with a control group working in telephone industry. Results have revealed that symptoms such as cough and dyspnea were more prevalent in tobacco-industry workers. Meanwhile, \(FEV_1 \) and \(FVC \) values were significantly reduced (8).

Previous studies have described reduced respiratory capacity in tobacco-industry workers. Diffuse interstitial pulmonary fibrosis was more prevalent. Among these workers compared to auto-making workers. The prevalence of chest tightness was significantly higher in tobacco workers (9-11).

In Iran, tobacco-industries have been developing during the previous decades, and several workers are involved in the growing of harvesting, and cigarettes fabricating which require further studies. In the present study, we have determined the risk of respiratory disorders among tobacco-industry workers.

MATERIALS AND METHODS

A cross-sectional study was performed on tobacco workers from different sections who were selected randomly.

Initially, the workers were divided according to the section of their duty, then the samples were chosen through a simple random sampling. The smoking workers or those who had positive history of pulmonary disease, such as asthma, chronic bronchitis and emphysema before employment were excluded. Workers with an employment duration of at least one year were enrolled. An occupational medicine specialist had examined all the participant in accordance with the guidelines of the ministry of health. Their medical history was recorded including the consumption of different types of tobacco production, cough, sputum, and dyspnea.

Furthermore, blood pressure, pulse rate, cardiac function and upper and lower respiratory tract symptoms were all assessed.

Worker underwent spirometry for at least 3 times (with Autopin Pul Minata set) and optimal results were considered as the patients' actual spirometry results (according to the ATS standard). Those presented with wheezing and crackle in the examination or found to have a specific pattern of disease in their spirometry were rechecked by a pulmonologist in National Research Institute of Tuberculosis and Lung Disease (NRITLD). If any suspicion arose, chest X-ray was obtained. Finally, data were analyzed by SPSS software.

RESULTS

Of a total 4000 data sheets of tobacco workers, 800 were randomly selected, of which 313 were excluded due to their smoking history. The remaining 487, working in different sections, were evaluated (Fig.1). No statistically significant difference was found among these different groups when considering age, genders, height, and working experience. Five cases developed COPD (1.27%) of whom 4 (0.96%) were working in cigarette fabricating section.

![Figure 1. Frequency of distribution of non-smoking workers in different sections of tobacco factory](image-url)
Table 1. Frequency of respiratory complaints among non-smoking workers with regard to the work experience.

<table>
<thead>
<tr>
<th>History of complaints</th>
<th>0-15 years</th>
<th>≥15 years</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cough</td>
<td>15</td>
<td>27</td>
<td>42</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>3</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>Tightness of chest</td>
<td>4</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Sputum</td>
<td>8</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>84</td>
<td>114</td>
</tr>
</tbody>
</table>

p-value=0.2, df=3, Chi-square = 4.5

Table 2. Frequency of spirometric patterns of non-smoking workers with regard to the work experience.

<table>
<thead>
<tr>
<th>Spirometric patterns</th>
<th>Work experience(ys)</th>
<th>Obstructive</th>
<th>Restrictive and mixed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-15</td>
<td>7</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>6</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>13</td>
<td>13</td>
<td>26</td>
</tr>
</tbody>
</table>

p-value>0.1, df=1, Chi-square=2.6

Table 3. Spirometric patterns of workers with regard to the section of their duty.

<table>
<thead>
<tr>
<th>Different sections</th>
<th>Spirometric pattern</th>
<th>Sorting</th>
<th>Cigarette making</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstructive</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Restrictive and mixed</td>
<td>7</td>
<td>6</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>13</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

p-value>0.4, df=1, Chi-square=0.65

Table 4. Radiologic appearance of non-smoking workers with abnormal spirometric pattern.

<table>
<thead>
<tr>
<th>Chest radiography appearance</th>
<th>Number of patients(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>37(79.5)</td>
</tr>
<tr>
<td>Obstructive</td>
<td>4(8.25)</td>
</tr>
<tr>
<td>Restrictive</td>
<td>2(4.5)</td>
</tr>
<tr>
<td>Other</td>
<td>4(8.25)</td>
</tr>
<tr>
<td>Total</td>
<td>47(100)</td>
</tr>
</tbody>
</table>

Of 8(1.92%) patients diagnosed for asthma, 3(0.72%) were working in cigarette fabricating section. Of 6 cases of restrictive disorders, 2 workers were in cigarette fabricating section, 2 workers were in sorting and blending section, 1 was in packaging section and the last one was in other sections. Our findings were presented in tables 1-4.

DISCUSSION

The measurement of tobacco dust performed previously in different sections showed that the total and respirable airborne dust concentration in the sections of sorting and blending were more than cigarette making and cigarette-packaging sections. The particles scattered in work environment contain G bacteria, mesophilic fungi, thermotolerant fungi, thermophilic actinomycetes and aspergillous. Generally, spores of the saprophytic fungi are the allergens that could induce hypersensitivity pneumonitis. As presented in the related tables, no significant difference was found between the workers’ respiratory complaints (cough, sputum, dyspnea, chest tightness) and work experience, work condition in various sections and different concentrations of dust.

There was also no significant correlation between the workers’ spirometric pattern, work experience, and their work environment. Despite the fact that most of the patients with lung disease were found in cigarette fabricating section, no significant correlation (p>0.05) was seen between type of pulmonary disease and different sections of the factory, and also between the above-mentioned disease, previous work history and exposure to tobacco.

Previous studies (3,9,10,12) have shown no significant relation between tobacco-dust exposure and workers’ respiratory disorders. Levy et al. and Fruhmann et al. have demonstrated that respiratory disorders are more prevalent among tobacco-industry workers, of course, they have not excluded participants with history of respiratory disorder or smoking(11,13).
A few cases with respiratory disorders had abnormal radiographs. It is concluded that chest radiography, by itself, is not a reliable paraclinical test for screening and follow up of the workers exposed to tobacco dust. Like most of the relevant published articles, our results only represent the allergic reactions of workers respiratory system to tobacco dust; meanwhile, there is no conclusive reason indicating the frequent abnormal spirometric pattern in the tobacco-industry workers.

REFERENCES

3- Gehlbach SH et al. Nicotine absorption by worker harvesting green Tobacco. Lancet 1975; 478-80
9- Gleich GI, Jones RT. Measurement of IgE antibodies by the radioallergosorbent test.(technical consideration).J Allergy Clin Immunology 1975; 334-45
11- Levy BS,Wegman DH. Occupational Health Recognizing and Preventive work related Disease. 2 nd ed; 1988.p.120-2
13- Fruhmann G, Speich TH, Prochazka R. Chronic bronchitis and dust concentration at the place of work. MWW Munch Med 1976 ; 118(7): 209-212
ادغامی شاخص‌های تست‌های تنفسی و علائم بالینی در کارگران کارخانجات تولید تونتون

دکتر حمیدرضا گلسلی؛ دکتر مسعود هاشمی، دکتر فرشته ملکی

استاد پیش‌خانه داخلی ـ ریه، استاد بیماری‌های داخلی ـ ریه، پژوهشگر بیماری‌های ریه

پزشک بخش بیماری‌های ریه موسسه تحقیقات تولید تونتون

پزشک بخش بیماری‌های ریه موسسه امور پزشکی تولید تونتون

منشأ و روش‌ها: این تحقیق به شیوه cross-sectional بر روی ۸۷۴ نفر از کارگران غریب‌سیگاری که در کارخانه دخانیات مشغول به خدمت بودند، از قسمت‌های مختلف کارخانه انجام شد و پس از انجام پرسشنامه و انجام CT scan، TLC، DLCO، رادیوگرافی پستان، و فشار گرفتن، نتایج به‌دست آمد. موارد مشغول به خدمت ۵ نفر (۰/۶۸%) در بخش COPD، ۲۹ نفر (۳/۰۴%), نفرانی ۴۲ نفر (۴/۷۹%) نسبت به تزریق ۷ کارگر به دلیل شدید‌تر بودن، پس نفر

توصیه‌گر و نشانه‌های تاثیر اختلالات تنفسی در کارخانجات کارخانه‌های تولید تونتون و پلت متانولی به کار بوده‌اند. لیست برای

بیماری‌های اصلی، اختلالات تحلیلی و محقق در کارخانه رابطه آماری معنی‌داری پیدا نشده بود. مجموع می‌توان گفت نتایج حاصل از این تحقیق نمایانگر عدم ارتباط واضح بین قسمت‌های مختلف کارخانه،

سناتو جنابی: اسبیومتری، کارگران کارخانه تولید تونتون، تولید تونتون

www.SID.ir