Abstract
The concept of \(\Gamma \)-semihypergroups is a generalization of semigroups, a generalization of semihypergroups and a generalization of \(\Gamma \)-semigroups. In this paper, we study the concept of semiprime ideals in a \(\Gamma \)-semihypergroup and prove some results. Also, we introduce the notion of \(\Gamma \)-hypergroups and closed \(\Gamma \)-subhypergroups. Finally, we study the concept of \(\Gamma \)-semihypergroups associated to binary relations and give necessary and sufficient conditions on a set of binary relations \(\Gamma \) on a non-empty set \(S \) such that \(S \) becomes a \(\Gamma \)-semihypergroup or a \(\Gamma \)-hypergroup.

Keywords: Hypergroup; semihypergroup; \(\Gamma \)-semigroup; \(\Gamma \)-semihypergroup; binary relation

1. Introduction
The hyperstructure theory was born in 1934, when Marty introduced the notion of a hypergroup [1]. Since then, hundreds of papers and several books have been written on this topic, see [2-5]. A recent book on hyperstructures [6] points out on their applications in cryptography, codes, automata, probability, geometry, lattices, binary relations, graphs and hypergraphs.

Algebraic hyperstructures are a generalization of classical algebraic structures. In a classical algebraic structure the composition of two elements is an element, while in an algebraic hyperstructure the composition of two elements is a non-empty set. More exactly, let \(H \) be a non-empty set. Then the map \(\circ : H \times H \to P^*(H) \) is called a hyperoperation where \(P^*(H) \) is the family of non-empty subsets of \(H \). The couple \((H, \circ) \) is called a hypergroupoid.

In the above definition, if \(A \) and \(B \) are two non-empty subsets of \(H \) and \(x \in H \), then we define \(A \circ B = \bigcup_{a \in A, b \in B} a \circ b; \ x \circ A = \{ x \} \circ A \) and \(A \circ x = A \circ \{ x \} \).

A hypergroupoid \((H, \circ) \) is called a semihypergroup if for every \(x, y, z \in H \), we have \(x \circ (y \circ z) = (x \circ y) \circ z \), and is called a quasihypergroup if for every \(x \in H \), \(x \circ H = H = H \circ x \). This condition is called the reproduction axiom. The couple \((H, \circ) \) is called a hypergroup if it is a semihypergroup and a quasihypergroup.

The notion of \(\Gamma \)-semigroups was introduced by Sen in [7, 8]. Let \(S \) and \(\Gamma \) be two non-empty sets. Then \(S \) is called a \(\Gamma \)-semigroup if there exists a mapping \(S \times \Gamma \times S \to S \), written \((a, \gamma, b)\) by \(a \gamma b \), such that it satisfies the identities \((a \alpha b) \beta c = a \alpha (b \beta c)\) for all \(a, b, c \in S \) and \(\alpha, \beta \in \Gamma \). Let \(S \) be an arbitrary semigroup and \(\Gamma \) a non-empty set. Define a mapping \(S \times \Gamma \times S \to S \) by \(a \alpha b = a^\beta b \) for all \(a, b \in S \) and \(\alpha, \beta \in \Gamma \). It is easy to see that \(S \) is a \(\Gamma \)-semigroup. Thus a semigroup can be considered to be a \(\Gamma \)-semigroup. Many classical notions of semigroups have been extended to \(\Gamma \)-semigroups, see (9, 10).

Let \(S \) be a \(\Gamma \)-semigroup and \(\alpha \) be a fixed element in \(\Gamma \). We define \(a \cdot b = a \alpha b \) for all \(a, b \in S \). Then \((S, \cdot)\) is a semigroup and is denoted by \(S_\alpha \).
2. Preliminaries and basic definitions

The concept of \(\Gamma \)-semihypergroups was introduced by Davvaz et al. [11, 12]. In this section we introduce some preliminaries and basic definitions of \(\Gamma \)-semihypergroups and give some examples.

Definition 2.1. Let \(S \) and \(\Gamma \) be two non-empty sets. Then \(S \) is called a \(\Gamma \)-semihypergroup if each \(\gamma \in \Gamma \) is a hyperoperation on \(S \), i.e., \(x\gamma y \subseteq S \) for every \(x, y \in S \), and for every \(\alpha, \beta \in \Gamma \) and \(x, y, z \in S \) we have the associative property that is \(x\alpha(y\beta z) = (x\alpha y)\beta z \).

Let \(A \) and \(B \) be two non-empty subsets of \(S \) and \(\gamma \in \Gamma \). Then we define:

\[
A\gamma B = \cup \{a\gamma b \mid a \in A, b \in B\},
\]

and

\[
A\Gamma B = \bigcup_{\gamma \in \Gamma} A\gamma B = \cup \{a\gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma\}.
\]

A \(\Gamma \)-semihypergroup \(S \) is called commutative if for every \(x, y \in S \) and for every \(\gamma \in \Gamma \) we have \(x\gamma y = y\gamma x \). A non-empty subset \(A \) of \(S \) is called a \(\Gamma \)-subsemihypergroup of \(S \) if \(A \Gamma A \subseteq A \).

Let \((S, \cdot) \) be a semihypergroup and let \(\Gamma = \{e\} \). Then \(S \) is a \(\Gamma \)-semihypergroup. So every semihypergroup is a \(\Gamma \)-semihypergroup.

Let \(S \) be a \(\Gamma \)-semihypergroup and \(\alpha \in \Gamma \), if we define \(a \circ b = aba \) for every \(a, b \in S \) then \((S, \circ) \) becomes a semihypergroup, we denote it by \(S_{\alpha} \).

Now, we give some other examples of \(\Gamma \)-semihypergroups.

Example 1. Let \(G \) be a group and \(\Gamma = \{\alpha, \beta\} \). Then for every \(x, y \in G \), we define \(x\alpha y = xy \) and \(x\beta y = G \). Then \(G \) is a \(\Gamma \)-semihypergroup.

Example 2. Let \((S, \leq) \) be a totally ordered set and \(\Gamma \) be a non-empty subset of \(S \). We define

\[
x\gamma y = \{z \in S \mid z \geq \max\{x, \gamma, y\}\},
\]

for every \(x, y \in S \) and \(\gamma \in \Gamma \). Then \(S \) is a \(\Gamma \)-semihypergroup.

Example 3. Let \(S \) be a \(\Gamma \)-semigroup and \(P \) be a non-empty subset of \(S \). Let \(\Gamma_{\rho} = \{\alpha_{\rho} : \alpha \in \Gamma\} \).

If we define \(x\alpha_{\rho} y = x\alpha P\beta y \), for every \(x, y \in S \) and \(\alpha \in \Gamma \), then \(S \) is a \(\Gamma_{\rho} \)-semihypergroup.

Let \(S \) be a \(\Gamma \)-semihypergroup. We define a relation \(\rho \) on \(S \times \Gamma \) as follows:

\[
(x, \alpha)\rho(y, \beta) \iff x\alpha = y\beta, \forall s \in S.
\]

Obviously \(\rho \) is an equivalence relation. Let \([x, \alpha] \) denote the equivalence class containing \((x, \alpha) \). Let \(M = \{(x, \alpha) : x \in S, \alpha \in \Gamma\} \). We define the hyperoperation \(\circ \) on \(M \) as follows:

\[
[x, \alpha] \circ [y, \beta] = \{[z, \gamma] : z \in x\alpha y\},
\]

for all \([x, \alpha], [y, \beta] \in M \).

Since \((x\alpha y)\beta z = x\alpha(y\beta z) \), for all \(x, y, z \in S \) and \(\alpha, \beta, \gamma \in \Gamma \), then

\[
[x, \alpha] \circ ([y, \beta] \circ [z, \gamma]) = ([x, \alpha] \circ [y, \beta]) \circ [z, \gamma],
\]

for all \([x, \alpha], [y, \beta], [z, \gamma] \in M \).

Thus the hyperoperation \(\circ \) is associative, so \((M, \circ)\) is a semihypergroup. This semihypergroup is called the left operator semihypergroup of \(S \).

Let \(S \) be a \(\Gamma \)-semihypergroup. If there exist elements \(e \in S \) and \(\delta \in \Gamma \) such that \(e\alpha = x \) for every \(x \in S \), then \(S \) is said to have a left partial unity which is denoted by \(e_{\delta} \). It is easy to check whether \(e_{\delta} \) is a left partial unity of \(S \), then \([e, \delta]\) is a left unity of the left operator semihypergroup \(M \).

Example 4. Consider Example 1 and let \(e \) be the identity element of \(G \). Then \(e_{\alpha} = e \) is a left partial unity of the \(\Gamma \)-semihypergroup \(G \).

The concept of \(\Gamma \)-hyperideals of a \(\Gamma \)-semihypergroup was defined and studied in [12].

Definition 2.2. A non-empty subset \(I \) of a \(\Gamma \)-semihypergroup \(S \) is called a left (right) \(\Gamma \)-hyperideal, “ideal, for short” of \(S \), if \(S \Gamma I \subseteq I \) (\(I \Gamma S \subseteq I \)). \(S \) is called a left (right) simple \(\Gamma \)-semihypergroup if it has no proper left (right) ideal. \(S \) is simple if \(S \) has no proper left and right ideals.
Let A be a non-empty subset of a Γ-semi-hypergroup S. Then the intersection of all ideals of S containing A is an ideal of S generated by A, and denoted by $<A>$.

Example 5. Consider Example 4. Put $S=\mathbb{N}$ with natural order. Then the subset $I_n=\{n,n+1,n+2,\cdots\}$ is an ideal of S, for every $n \in \mathbb{N}$.

The following lemmas and theorem were proved in [12].

Lemma 2.3. Let S be a Γ-semi-hypergroup. If A is a non-empty subset of S, then

$$<A>=A\cup\Delta S\cup S\Delta A\cup S\Delta A\Gamma S.$$

One can see that, if S is a commutative Γ-semi-hypergroup and $\phi \neq A \subseteq S$, then $<A>=A\cup\Delta S$. If S is a commutative Γ-semi-hypergroup with left partial unity, then $<A>=\Gamma S$.

Lemma 2.4. Let S be a Γ-semi-hypergroup and Λ be a non-empty set such that for every $\lambda \in \Lambda$, I_{λ} is an ideal of S. Then the following assertions hold:

1. $\bigcup_{\lambda \in \Lambda} I_{\lambda}$ is an ideal of S;
2. $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is an ideal of S.

Definition 2.5. A proper ideal P of a Γ-semi-hypergroup S is called a prime ideal, if for every ideal I and J of S, if $I\cup J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$. If a Γ-semi-hypergroup S is commutative, then a proper ideal P is prime if and only if $a\Gamma b \subseteq P$ implies $a \in P$ or $b \in P$, for any $a,b \in S$.

Example 6. Consider Example 2. Put $S=\Gamma = \{1,2,\cdots,n\}$ for some natural number n.

Then, all ideals of S have the form $I_i=\{i,i+1,\cdots,n\}$, for every $i \in S$ and I_2 is a prime ideal of S.

Theorem 2.6. Let S be a Γ-semi-hypergroup and P be a left ideal of S. Then P is a prime ideal of S if and only if for all $x,y \in S$,

$$x\Gamma y \subseteq P \text{ implies that } x \in P \text{ or } y \in P.$$
(2) If I is a right ideal of S then, I^+ is a right hyperideal of M.

Theorem 2.10. [12] Let S be a Γ-semihypergroup with a left partial unity and M be its left operator semihypergroup. If I is a right ideal of S, then $I = (I^+)^*$.

3. Semiprime ideals of Γ-semihypergroups

In this section, we introduce the concept of semiprime ideals of a Γ-semihypergroup and prove some results.

Definition 3.1. Let S be a Γ-semihypergroup. Then a proper left (right) ideal P of S is said to be a left (right) semiprime ideal, if for any left (right) ideal A of S, $A \Gamma A \subseteq P$ implies that $A \subseteq P$. A proper ideal P is called semiprime ideal if P is both left and right semiprime ideal of S.

Example 7. Let $\Gamma = \{1, 2, 3, \cdots, n\}$ for some $n \in \mathbb{N}$. For every $x, y \in S$ and $\alpha \in \Gamma$ we define the following hyperoperation on S

$$x \alpha y = \{s \in S | s \geq \max\{x, \alpha, y\}\}.$$

Then S is a Γ-semihypergroup and $I_i = \{i, i+1, \cdots, n\}$ is a semiprime ideal of S for $1 \leq i \leq n$.

Lemma 3.2 Let S be a Γ-semihypergroup with a left partial unity and P be a left ideal of S. Then P is a left semiprime ideal of S if and only if for every $x, y \in S$ we have

$$x \Gamma y \subseteq P \Rightarrow x \in P.$$

Proof: Suppose that P is a left semiprime ideal of S and $x \Gamma y \subseteq P$ for $x \in S$. Then $y \Gamma x \subseteq y \Gamma P \subseteq P$. Since P is a left semiprime ideal and Γx is a left ideal of S, it follows that $x \in y \Gamma P \subseteq P$.

Conversely, let A be an ideal of S such that $A \Gamma A \subseteq P$. If $a \in A$, then $a \Gamma A \subseteq A \Gamma A \subseteq P$. So, by the above implication $a \in P$ thus $A \subseteq P$.

Lemma 3.3. Let S be a Γ-semihypergroup and M be its left operator semihypergroup. Then the following statements hold:

1. If P is a semiprime ideal of M, then P^+ is a semiprime ideal of S.
2. If S has a left partial unity and Q is a semiprime ideal of S, then Q^+ is a semiprime ideal of M.

Proof:

(1) Suppose that P is a semiprime ideal of M and A is an ideal of S such that $A \Gamma A \subseteq P^+$. Then $[A \Gamma A, \Gamma] \subseteq P$ so $[A, \Gamma] \circ [A, \Gamma] \subseteq P$. Since $[A, \Gamma]$ is an ideal of M and P is a semiprime ideal of M, it follows that $[A, \Gamma] \subseteq P$ hence $A \subseteq P^+$. Thus P^+ is a semiprime ideal of S.

(2) Suppose that Q is a semiprime ideal of S and A is an ideal of M such that $A \circ A \subseteq Q^+$. First, we show that $A \Gamma A \subseteq (A \circ A)^+$. Let $t \in A \Gamma A$. Then there exist $x, y \in A^+$ and $\alpha \in \Gamma$ such that $t = xy\alpha$. So $[t, \alpha] \in [x, \alpha] \circ [y, \alpha] \subseteq A \circ A$ for every $\alpha \in \Gamma$. Thus $t \in (A \circ A)^+$, so $A \Gamma A \subseteq (A \circ A)^+$. Now, from $A \circ A \subseteq Q^+$ and Theorem 2.10 we have

$$A \Gamma A \subseteq (A \circ A)^+ \subseteq (Q^+) = Q.$$

Since Q is a semiprime ideal and A^+ is an ideal of S, it follows that $A^+ \subseteq Q$. Thus $A \subseteq (A^+) \subseteq Q^+$.

Lemma 3.4. Let P_i be a prime ideal of a Γ-semihypergroup S for every $i \in I$ and let $P = \bigcap_{i \in I} P_i$. Then if $P \neq \emptyset$, then P is a semiprime ideal of S.

Proof: It is immediate.

Lemma 3.5. Let T be a Γ-subsemihypergroup and I be an ideal of the Γ-semihypergroup S such that $I \Gamma T = \emptyset$. Then T is contained in a Γ-subsemihypergroup that is maximal with respect to the property of not meeting I.

www.SID.ir
Proof: Since the set \(A = \{ K | T \leq K \leq S \text{ and } K \cap I = \emptyset \} \) is non-empty, it follows that by Zorn's lemma, \(A \) has a maximal element that satisfies the theorem.

Lemma 3.6. Let \(T \) be a commutative \(\Gamma \)-subsemihypergroup and \(I \) be an ideal of the \(\Gamma \)-semihypergroup \(S \) such that \(I \cap T = \emptyset \). Then there exists a prime ideal of \(S \), say \(P \), such that \(I \subseteq P \) and \(P \cap T = \emptyset \).

Proof: By Zorn's lemma, there exists an ideal \(P \) such that \(P \) is maximal with respect to properties of \(I \subseteq P \) and \(P \cap T = \emptyset \). We claim that \(x, y \in S \setminus P \). Then, we show that \(x \Gamma S \Gamma y \subset P \). Since \(x, y \notin P \) and \(P \) is maximal, it follows that \(\langle P, x \rangle \cap T \neq \emptyset \) and \(\langle P, y \rangle \cap T \neq \emptyset \).

Thus, there exist \(s, t \in S \) such that \(s \leq \langle P, x \rangle \cap T \) and \(t \leq \langle P, y \rangle \cap T \). From the property \(P \cap T = \emptyset \), we have only four cases:

(i) \(s \in s, \alpha x \) and \(t \in t, \beta y \) for some \(s, t \in S \) and \(\alpha, \beta \in \Gamma \),
(ii) \(s \in s, \alpha x \) and \(t = y \) for some \(s \in S \) and \(\alpha \in \Gamma \),
(iii) \(s = x \) and \(t \in t, \beta y \) for some \(t \in S \) and \(\beta \in \Gamma \),
(iv) \(s = x \) and \(t = y \).

If (i) holds, then \(s \Gamma t \subseteq (s, \alpha x) \Gamma (t, \beta y) \subseteq x \Gamma S \Gamma y \).

Now, since \(T \) is a \(\Gamma \)-subsemihypergroup, it follows that \(s \Gamma t \subseteq T \). Thus \(x \Gamma S \Gamma y \subset P \).

Similarly, in the other cases we conclude that \(x \Gamma S \Gamma y \subset P \). Therefore, \(P \) is a prime ideal of \(S \).

Let \(S \) be a \(\Gamma \)-semihypergroup and \(I \) be an ideal of \(S \). A prime ideal \(P \) of \(S \) is called a minimal prime ideal belonging to \(I \), if \(I \subseteq P \) and there is no prime ideal containing \(I \) and properly contained in \(P \).

Corollary 3.7. If \(Q \) is a prime ideal containing an ideal \(I \), then there exists a minimal prime ideal belonging to \(I \) which is contained in \(Q \).

Definition 3.8. Let \(S \) be a \(\Gamma \)-semihypergroup and \(I \) be an ideal of \(S \). Then the prime radical of \(I \) is defined as the intersection of all prime ideals of \(S \) containing \(I \) and is denoted by \(\sqrt{I} \).

Proposition 3.9. Let \(S \) be a \(\Gamma \)-semihypergroup and \(I \) be an ideal of \(S \). Then the following statements hold:

1. \(\sqrt{I} \) is a semiprime ideal of \(S \);
2. \(\sqrt{I} = \cap \{ P | P \text{ is a minimal prime ideal belonging to } I \} \).

Proof: (1) It is straightforward.
(2) It is taken from Corollary 3.7.

4. \(\Gamma \)-hypergroups

In this section we study the concept of \(\Gamma \)-hypergroups and give some examples. Also, we introduce the concept of closed \(\Gamma \)-subhypergroups of a \(\Gamma \)-hypergroup.

Definition 4.1. A \(\Gamma \)-semihypergroup \(S \) is called a \(\Gamma \)-hypergroup if \((S, \alpha) \) is a hypergroup for every \(\alpha \in \Gamma \).

Example 8. Let \(S = \{ a, b, c, d \} \) and \(\Gamma = \{ \alpha, \beta \} \).
We define the hyperoperations \(\alpha \) and \(\beta \) as follows:

\[
\begin{array}{cccc}
\alpha & a & b & c & d \\
\hline
a & \{a, b\} & \{b, c\} & \{c, d\} & \{a, d\} \\
b & \{b, c\} & \{c, d\} & \{a, d\} & \{a, b\} \\
c & \{c, d\} & \{a, d\} & \{a, b\} & \{b, c\} \\
d & \{a, d\} & \{a, b\} & \{b, c\} & \{c, d\}
\end{array}
\]

\[
\begin{array}{cccc}
\beta & a & b & c & d \\
\hline
a & \{b, c\} & \{c, d\} & \{a, d\} & \{a, b\} \\
b & \{c, d\} & \{a, d\} & \{a, b\} & \{b, c\} \\
c & \{a, d\} & \{a, b\} & \{b, c\} & \{c, d\} \\
d & \{a, b\} & \{b, c\} & \{c, d\} & \{a, d\}
\end{array}
\]

Then \(S \) is a \(\Gamma \)-hypergroup.

Example 9. Let \(S \) be a non-empty set and \(\Gamma = \{ \alpha, \beta \} \). Then for every \(x, y \in S \) and \(\alpha, \beta \in \Gamma \) we define \(x \alpha y = S \) and \(x \beta y = \{x, y\} \).
Then \(S \) is a \(\Gamma \)-hypergroup.

Example 10. Let \((S, \cdot) \) be a group. Let \(\Gamma \subseteq P(S) \). We define \(x \alpha y = x \cdot \alpha \cdot y \) for every
Then \(S \) is a \(\Gamma \)-hypergroup.

Example 11. Let \((S, \diamond)\) be a hypergroup and \(\emptyset \neq \Gamma \subseteq S \). We define \(x\alpha y = x \diamond \alpha \diamond y \) for every \(x, y \in S \) and \(\alpha \in \Gamma \). Then \(S \) is a \(\Gamma \)-hypergroup.

Example 12. Let \((G, \cdot)\) be a group and \(\{A_{g}\}_{g \in G} \) be a collection of disjoint sets. Consider \(S = \bigcup_{g \in G} A_{g} \) and \(\Gamma = G \). For \(x, y \in S \) there exist \(g_{x}, g_{y} \in G \) such that \(x \in A_{g_{x}} \) and \(y \in A_{g_{y}} \). We define \(x \alpha y = A_{g_{x}\alpha g_{y}} \). Then \(S \) is a \(\Gamma \)-hypergroup.

Theorem 4.2. [12] Let \(S \) be a \(\Gamma \)-group and \(P \) be a \(\Gamma \)-subgroup of \(S \). Let \(\Gamma' = \{ \gamma | \gamma \in \Gamma \} \). Now, for every \(x, y \in S \) and \(\alpha' \in \Gamma \) we define \(x \alpha' y = x \alpha y \cup P \). Then, \(S \) is a \(\Gamma' \)-hypergroup.

Theorem 4.3. Let \(S \) be a \(\Gamma \)-semihypergroup. Then \(S \) is a simple \(\Gamma \)-semihypergroup if and only if \(S_{\alpha} \) is a hypergroup for every \(\alpha \in \Gamma \).

Proof: Suppose that \(S_{\alpha} \) is a hypergroup and \(I \) is a left (right) ideal of \(S_{\alpha} \). If \(x \in I \), then the reproduction axiom implies that \(x \alpha S = S = S \alpha x \). On the other hand, we have \(S \alpha x \subseteq I \) \((x \alpha S \subseteq I)\). Therefore, \(I = S \).

Conversely, suppose that \(S \) is left and right simple. Then for every \(x \in S \) and \(\alpha \in \Gamma \), put \(I = x \alpha S \). Thus, \(I \) is a right ideal of \(S \), for

\[
\Gamma S = (x \alpha S) \Gamma S = x \alpha (S \Gamma S) \subseteq x \alpha S = I
\]

so \(x \alpha S = S \). Similarly, we have \(S = S \alpha x \). Therefore, \(S \) is a \(\Gamma \)-hypergroup.

Corollary 4.4. If \(S_{\alpha} \) is a hypergroup for some \(\alpha \in \Gamma \), then for every \(\alpha \in \Gamma \), \(S_{\alpha} \) is a hypergroup.

Definition 4.5. A subset \(H \) of a \(\Gamma \)-hypergroup is called a \(\Gamma \)-subhypergroup if for every \(h, k \in H \) and \(\alpha \in \Gamma \) we have \(h \alpha k \subseteq H \) and \(h \alpha H = H = H \alpha h \).

Definition 4.6. Let \(S \) be a \(\Gamma \)-hypergroup. Then a subset \(H \) of \(S \) is called closed if for every \(h, k \in H \), \(x \in S \) and \(\alpha \in \Gamma \) we have the following implication

\[
h \in x \alpha H \Rightarrow x \in H.
\]

Example 14. Consider \((\mathbb{Z}, +)\) and let \(\Gamma = \{ \alpha, \beta \} \) where \(\alpha = \{-1, 1\} \) and \(\beta = \{-2, +2\} \). If for every \(x, y \in \mathbb{Z} \) we define:

\[
x \alpha y = \{ x + y - 1, x + y + 1 \}, x \beta y = \{ x + y - 2, x + y + 2 \}.
\]

Then \(\mathbb{Z} \) is a \(\Gamma \)-hypergroup and \(H = 2\mathbb{Z} \) is a closed subset of \(\mathbb{Z} \).

Example 15. Consider \((\mathbb{Z}, +)\) and let \(\Gamma = \{ \alpha, \beta \} \) where \(\alpha = \{-2, 2\} \) and \(\beta = \{-4, 4\} \). If for every \(x, y \in \mathbb{Z} \) we define:

\[
x \alpha y = \{ x + y - 2, x + y + 2 \}, x \beta y = \{ x + y - 4, x + y + 4 \}.
\]

Then \(\mathbb{Z} \) is a \(\Gamma \)-hypergroup and \(H = 2\mathbb{Z} \) is a closed \(\Gamma \)-subhypergroup of \(\mathbb{Z} \).

Let \(S \) be a \(\Gamma \)-hypergroup. Then two new hyperoperations may be defined on \(S \) as follows:

\[
a / b = \{ x \in S | a \in x \alpha b, \alpha \in \Gamma \} \quad \text{and} \quad a \setminus b = \{ x \in S | a \in b \alpha x, \alpha \in \Gamma \}.
\]

If \(A \) and \(B \) are non-empty subsets of \(S \), then

\[
A / B = \bigcup_{a \in A, b \in B} a / b \quad \text{and} \quad A \setminus B = \bigcup_{a \in A, b \in B} a \setminus b.
\]

Lemma 4.7. Let \(S \) be a \(\Gamma \)-hypergroup, \(A, B, C \) and \(D \) be non-empty subsets of \(S \) and \(x, y \in S \). Then the following assertions hold:

1. If \(A \subseteq B \) and \(C \subseteq D \), then \(A / C \subseteq B / D \);
2. \((A / B) / C = A / (C \Gamma B) \);
3. \((A \setminus B) \setminus C = A \setminus (B \setminus C) \);
4. \(y \in x \setminus (x / y) \);
(5) \(y \in x/(x \setminus y) \);

(6) If \(A \) is a closed subset of \(S \), then \(A/A \subseteq A \);
(7) \(A \subseteq (A\Gamma B)/B \);
(8) If \(H \) is a \(\Gamma \)-subhypergroup, then \(H \subseteq H/H \).

Proof: (1) It is immediate.

(2) Suppose that \(x \in (A/B)/C \). Then, there exist \(a \in A, b \in B \) and \(c \in C \) such that \(x \in (a/b)/c \).

So, we have

\[
x \in (a/b)/c \quad \Rightarrow \exists y \in a/b, x \in y/c
\]

\[
\Rightarrow a \in y\Gamma b, y \in x\Gamma c
\]

\[
\Rightarrow a \in (x\Gamma c)\Gamma b = x\Gamma(c\Gamma b)
\]

\[
\Rightarrow \exists z \in c\Gamma b, a \in x\Gamma z
\]

\[
\Rightarrow x \in a/z \subseteq a/(c\Gamma b) \subseteq A/(C\Gamma B).
\]

Thus, \((A/B)/C \subseteq A/(C\Gamma B) \).

Conversely, suppose that \(x \in A/(C\Gamma B) \). Then there exist \(a \in A, b \in B \) and \(c \in C \) such that \(x \in a/(c\Gamma b) \). So there exists \(y \in c\Gamma b \) such that \(x \in a/y \). So \(a \in x\Gamma y \subseteq x\Gamma(c\Gamma b) = (x\Gamma c)\Gamma b \).

Thus there exists \(z \in x\Gamma c \) such that \(a \in z\Gamma b \) and so \(x \in z/c, z \in a/b \). Therefore, \(x \in (A/B)/C \).

(3) It is similar to (2).

(4) Let \(a \in x/y \neq \emptyset \). Then \(x \in a\Gamma y \), so \(y \in x \setminus a \subseteq x \setminus (x/y) \).

(5) it is similar to (4).

(6) If \(x \in A/A \), then \(x \in a_1/a_2 \). So \(a_1 \in x\Gamma a_2 \subseteq x\Gamma A \cap A \). Since \(A \) is a closed subset of \(S \), it follows that \(x \in A \). Therefore, \(A/A \subseteq A \).

(7) Suppose that \(x \in A \) and \(y \in x\Gamma B \). Then \(x \in y/B \subseteq (A\Gamma B)/B \).

(8) Suppose that \(H \) is a \(\Gamma \)-subhypergroup and \(h \in H \). Then there exists \(h_1 \in H \) such that \(h_1 \in h_1\Gamma h_2 \) thus \(h_1 \in h_1/h_2 \subseteq H/H \), so \(H \subseteq H/H \).

Theorem 4.8. Let \(S \) be a \(\Gamma \)-hypergroup and \(H \) be a \(\Gamma \)-subhypergroup of \(S \). Then \(H \) is a closed \(\Gamma \)-subhypergroup if and only if \(H = H/H \).

Proof: Suppose that \(H \) is a closed \(\Gamma \)-subhypergroup. Then, by the previous lemma, \(H \subseteq H/H \subseteq H \). Thus \(H = H/H \).

Conversely, suppose that \(H/H = H \). If \(y \in x \alpha \cap H \), for \(h \in H \), then \(x \in y/h \subseteq H/H = H \). Therefore, \(H \) is a closed \(\Gamma \)-subhypergroup of \(S \).

Example 16. Let \(G \) be a group with a non trivial center. Let \(P, Q \subseteq Z(G) \) and put \(\Gamma = \{\alpha, \beta\} \).

For every \(x, y \in G \) we define \(x\alpha y = xyP \) and \(x\beta y = xyQ \). Then \(G \) is a \(\Gamma \)-hypergroup.

Let \(a, b \in G \). Then

\[
a/b = \{x \in G | a \in x\alpha b\}
\]

\[
= \{x \in G | a \in x\alpha b \cap x\beta b\}
\]

\[
= \{x \in G | a \in x\beta P \cup x\beta Q\}
\]

\[
= ab^{-1} P^{-1} \cup ab^{-1} Q^{-1}.
\]

If \(H \) is a \(\Gamma \)-subhypergroup of \(G \) containing \(P \) and \(Q \), then for every \(a, b \in H \) we have \(a/b = ab^{-1} P^{-1} \cup ab^{-1} Q^{-1} \subseteq H \), so by the above theorem, \(H \) is a closed \(\Gamma \)-subhypergroup of \(G \).

Lemma 4.9. Let \(S \) be a \(\Gamma \)-semihypergroup and \(H \) and \(K \) be two closed \(\Gamma \)-subhypergroups of \(S \). Then \(< H \cup K > \subseteq \langle H \Gamma K \rangle \).

Proof: Since \(H\Gamma K \subseteq < H \cup K > \), it follows that \(< H\Gamma K > \subseteq < H \cup K > \). Now, we prove the converse of inclusion. Since \(H \) and \(K \) are closed \(\Gamma \)-subhypergroups of \(S \), it follows that \(H\Gamma K \) is a closed subset of \(S \). Now, by the previous theorem and Lemma 4.7, we have

\[
H = H/H \subseteq (H\Gamma K)/(H\Gamma K)/H
\]

\[
= (H\Gamma K)/(H\Gamma K) \subseteq < H\Gamma K >.
\]

Similarly, \(K \subseteq < H\Gamma K > \). Therefore, \(< H \cup K > \subseteq < H\Gamma K > \).

5. \(\Gamma \)-semihypergroups associated to binary relations

The connections between hyperstructures and binary relations have been analyzed by many
researchers, such as Rosenberg [13], Corsini [14], Cristea and Stefănescu [15] and others [16, 17, 18].

In this section we associate to a set of binary relations on a non-empty set \(S \), say \(\Gamma \), a partial \(\Gamma \)-hypergroupoid and get necessary and sufficient conditions such that it is a \(\Gamma \)-semihypergroup or a \(\Gamma \)-hypergroup.

Rosenberg [13] has associated a partial hypergroupoid \(H_\Gamma \), with a binary relation \(R \) defined on a non-empty set \(H \), where, for any \(\langle x, y \rangle \in H \),
\[
\{ z \in H \mid (x, z) \in R \}, \quad x \circ y = x \circ x \cup y \circ y.
\]

An element \(x \in H \) is called an outer element for \(R \) if there exists \(h \in H \) such that \((h, x) \not\in R^2 \).

Rosenberg proved the next theorem.

Theorem 5.1. [13] \(H_\Gamma \) is a hypergroup if and only if

1. \(R \) has full domain;
2. \(R \) has full range;
3. \(R \subseteq R^2 \);
4. If \((a, x) \in R^2 \), then \((a, x) \in R \), whenever \(x \) is an outer element.

Let \(R \) be a binary relation on a non-empty set \(S \). Then an element \(Sx \) is called a semiouter element for the relation \(R \) if there exists \(h \in S \) such that \((h, x) \not\in R \).

Let \(R \) be a binary relation on a non-empty set \(S \), \(A \subseteq S \) and \(x, y \in S \). Then we use the following notations:
\[
L^R_x = R(x) = \{ z \in S \mid (x, z) \in R \}; \quad R(x, y) = \{ z \in S \mid (x, z) \in R \lor (y, z) \in R \}; \quad R(A) = \{ z \in S \mid (a, z) \in R, \exists a \in A \}; \quad R^{-1}(A) = \{ z \in S \mid (z, a) \in R, \exists a \in A \}.
\]

Definition 5.2. Let \(S \) be a non-empty set and \(\mathcal{R} \) be a set of binary relations on \(S \). Then for every \(\alpha \in \mathcal{R} \) we can associate a hyperoperation \(\circ_{\alpha} \) on \(S \) as follows:
\[
x \circ_{\alpha} y = \alpha(x, y) = L^\alpha_x \cup L^\alpha_y, \quad \forall x, y \in S.
\]

So \((S, \circ_{\alpha}) \) is a partial hypergroupoid. Now, let \(\Gamma = \{ \alpha \mid \alpha \in \mathcal{R} \} \). Then \(S \) is a partial \(\Gamma \)-hypergroupoid and is denoted by \(S_\Gamma \).

To simplify, we write \(\circ_{\alpha} \) by \(\alpha \) and consider \(\Gamma = \mathcal{R} \), in this way for every \(\alpha \in \Gamma \) and \(x, y \in S \) we have
\[
x \circ \gamma = x \circ_{\alpha} \gamma = \alpha(x, y) = L^\alpha_x \cup L^\alpha_y.
\]

It is easy to see that if for every \(\alpha \in \Gamma \) we have \(\alpha^{-1}(S) = S \), then \(S_\Gamma \) is a \(\Gamma \)-hypergroupoid.

Example 17. Let \(S = \{1, 2, 3, 4, 5\} \) and \(\Gamma = \{\alpha, \beta, \gamma\} \) such that
\[
\alpha = \{(1,1), (1,2), (2,4), (3,4), (4,5), (4,4), (5,2), (4,4), (4,5), (3,3), (4,1), (5,4), (5,3)\},
\]
\[
\beta = \{(1,1), (1,3), (1,4), (2,5), (3,3), (4,1), (5,4), (5,3)\},
\]
\[
\gamma = \{(1,1), (2,3), (3,4), (4,5), (5,1), (5,5)\}.
\]

Then \(S_\Gamma \) is a \(\Gamma \)-hypergroupoid.

Lemma 5.3. Let \(S \) be a non-empty set and \(\Gamma \) be a set of binary relations on \(S \) such that \(S_\Gamma \) is a \(\Gamma \)-hypergroupoid. Then the following assertions hold:
1. \(S_\Gamma \) is a commutative \(\Gamma \)-hypergroupoid;
2. For every \(x \in S \) and \(\alpha \in \Gamma \), \(x \circ \alpha = \alpha(x) \);
3. For every \(x, y, z \in S \) and \(\alpha, \beta \in \Gamma \), \(x \circ (y \circ z) = \alpha(x) \circ \beta(y, z) \);
4. For every \(x, y, z \in S \) and \(\alpha, \beta \in \Gamma \), \((x \circ y) \circ z = \alpha \circ \beta(x, y) \cup \beta(z) \).

Proof: The proof is straightforward.

In the following we provide some conditions on \(\Gamma \) such that \(S_\Gamma \) be a \(\Gamma \)-semihypergroup.

Theorem 5.4. Let \(S \) be a non-empty set and \(\Gamma \) be a set of binary relations on \(S \) such that \(S_\Gamma \) be a \(\Gamma \)-hypergroupoid. Then \(S_\Gamma \) is a \(\Gamma \)-semihypergroup if and only if the following conditions hold:

1. \(\text{(}\Gamma \text{SH}1) \) For every \(\alpha, \beta \in \Gamma \), \(\alpha \subseteq \alpha \beta \);
2. \(\text{(}\Gamma \text{SH}2) \) If \(x \) is a semiouter element for the relation \(\alpha \beta \) and \((a, x) \in \beta \alpha \), then \((a, x) \in \beta \) for every \(a \in S \) and \(\alpha, \beta \in \Gamma \);
If \(x \) is a semiouter element for the relations \(\alpha \beta \) and \(\beta \) and \((a, x) \in \beta \alpha\), then \((a, x) \in \alpha \beta\), for every \(a \in S \) and \(\alpha, \beta \in \Gamma \).

Proof: Suppose that \(S_\Gamma \) is a \(\Gamma \)-semihypergroup. We prove the conditions \((\Gamma SH1)\), \((\Gamma SH2)\) and \((\Gamma SH3)\) of the theorem.

\((\Gamma SH1)\) Let \(x, y \in S \) and \(\alpha, \beta \in \Gamma \) such that \(y \in \alpha(x) \). Then we consider two cases:

Case (i) \(y \in \beta(y) \). Then \(y \in \alpha \beta(x) \).

Case (ii) \(y \notin \beta(y) \). Then we have \((x \alpha(x)y) = x \alpha(x) \beta(y)\) so the associativity axiom and the previous lemma conclude that \(\alpha \beta(x) \cup \beta(y) = \alpha(x) \cup \beta \alpha(x) \cup \beta \alpha(y) \).

Now, since \(y \in \alpha(x) \) and \(y \notin \beta(y) \), it follows that \(y \in \alpha \beta(x) \). Therefore, \(\alpha \subseteq \alpha \beta \).

\((\Gamma SH2)\) Suppose that \(x \) is a semiouter element for the relation \(\alpha \beta \) and \(x \in \beta \alpha(a) \). So there exists \(h \in S \) such that \(x \notin \alpha \beta(h) \). Thus the associativity axiom and the previous lemma conclude that \((h \alpha h \beta h = h \alpha (h \beta h \alpha) \), thus \(\alpha \beta(h) \cup \beta(a) = \alpha(h) \cup \beta \alpha(h) \cup \beta \alpha(a) \).

Since \(x \in \beta \alpha(a) \) and \(x \notin \alpha \beta(h) \), it follows that \(x \in \beta \alpha(a) \).

\((\Gamma SH3)\) Suppose that \(x \) is a semiouter element for the relations \(\alpha \beta \) and \(\beta \) and let \(x \in \beta \alpha(a) \).

So there exist \(h, t \in S \) such that \((h, x) \notin \alpha \beta \) and \((t, x) \notin \beta \). Now, we have \(h \alpha(x \beta h) = (h \alpha a) \beta t \) thus \(\alpha(h) \cup \beta \alpha(a, t) = \alpha \beta(a, h) \cup \beta \alpha(t) \).

Since \(x \in \beta \alpha(a) \), \(x \notin \alpha \beta(h) \) and \(x \notin \beta \alpha(t) \), it follows that \(x \in \alpha \beta(a) \).

Conversely, suppose that \(S \) is a non-empty set and \(\Gamma \) be a set of binary relations on \(S \) such that \(S_\Gamma \) is a \(\Gamma \)-hypergroupoid and the conditions \((\Gamma SH1)\), \((\Gamma SH2)\) and \((\Gamma SH3)\) of the theorem are satisfied. We prove the associativity axiom for \(S_\Gamma \).

Let \(x, y, z, t \in S \) and \(\alpha, \beta \in \Gamma \) such that \(t \in x \alpha(y \beta z) = \alpha(x) \cup \beta \alpha(y, z) \). Then we have three cases:

Case (i) \(t \in \alpha(x) \). Then by the condition \((\Gamma SH1)\) \(t \in \alpha \beta(x) \).

Case (ii) \(t \in \beta \alpha(x) \). Then if \(t \notin \alpha \beta(x) \cup \beta(z) \), then \(t \) is a semiouter element for the relations \(\alpha \beta \) and \(\beta \). So by the condition \((\Gamma SH3)\) \(t \in \alpha \beta(x) \).

Case (iii) \(t \in \beta \alpha(z) \). Then if \(t \notin \alpha \beta(x) \), then \(t \) is a semiouter element for the relation \(\alpha \beta \) so by the condition \((\Gamma SH2)\), \(t \in \beta(z) \). Thus \(x \alpha(y \beta z) \subseteq (x \alpha) \beta z \). In the same way, we can prove the converse inclusion. Therefore, \(S_\Gamma \) is a \(\Gamma \)-semihypergroup.

Example 18. Let \(S = \{1,2,3\} \) and \(\Gamma = \{\alpha, \beta\} \) such that \(\alpha = \{(1,2), (2,2), (2,3), (3,3)\} \) and \(\beta = \{(1,3), (2,2), (3,2), (3,3)\} \). Then we have the table of hyperoperations \(\alpha \) and \(\beta \) as follows:

\[
\begin{array}{c|ccc}
\alpha & 1 & 2 & 3 \\
\hline
1 & \{2\} & \{2,3\} & \{2,3\} \\
2 & \{2,3\} & \{2,3\} & \{2,3\} \\
3 & \{2,3\} & \{2,3\} & \{3\} \\
\end{array}
\]

\[
\begin{array}{c|ccc}
\beta & 1 & 2 & 3 \\
\hline
1 & \{3\} & \{2,3\} & \{2,3\} \\
2 & \{2,3\} & \{2\} & \{2,3\} \\
3 & \{2,3\} & \{2,3\} & \{2,3\} \\
\end{array}
\]

Then \(S_\Gamma \) is a \(\Gamma \)-semihypergroup.

Theorem 5.5. Let \(S \) be a non-empty set and \(\Gamma \) be a set of binary relations on \(S \) such that \(S_\Gamma \) is a \(\Gamma \)-semihypergroup. Then \(S_\Gamma \) is a \(\Gamma \)-hypergroup if and only if \(\alpha(S) = S \) for every \(\alpha \in \Gamma \).

Proof: Suppose that \(S_\Gamma \) is a \(\Gamma \)-hypergroup. Then \(S_\alpha \) is a hypergroup for every \(\alpha \in \Gamma \). So by Theorem 5.1, \(\alpha \) has full range, thus \(\alpha(S) = S \).

Conversely, suppose that \(\alpha(S) = S \) for every \(\alpha \in \Gamma \) so \(S_\alpha \) is a hypergroup. Therefore, \(S_\Gamma \) is a \(\Gamma \)-hypergroup.

Example 19. Let \(S = \{1,2,3\} \) and \(\Gamma = \{\alpha, \beta\} \) such that \(\alpha = \Delta_S \cup \{(2,1), (3,2)\} \) and \(\beta = \Delta_S \cup \{(3,1)\} \), where \(\Delta_S \) is the diagonal
relation on S. Then we have the table of hyperoperations α and β as follows:

<table>
<thead>
<tr>
<th>α</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${1}$</td>
<td>${1,2}$</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>${1,2}$</td>
<td>${1,2}$</td>
<td>S</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>S</td>
<td>${2,3}$</td>
</tr>
</tbody>
</table>

Then S is a Γ-hypergroup.

Lemma 5.6. Let S be a non-empty set and Γ be a set of binary relations on S such that S_Γ is a Γ-semihypergroup. Then $I = \Gamma(S) = \bigcup_{\alpha \in I} \alpha(S)$ is a minimal ideal of S_Γ.

Proof: Suppose that $a \in I$, $s \in S$ and $\alpha \in \Gamma$. Then we have $saa = \alpha(a) \cup \alpha(s) \subseteq \alpha(S) \subseteq I$. So I is an ideal of S_Γ. Furthermore, if J is an ideal of S_Γ and $b \in J$, then for every $s \in S$ and $\alpha \in \Gamma$, $sab = \alpha(s) \cup \alpha(b) \subseteq J$. So $\alpha(S) \subseteq J$ hence $I \subseteq J$.

Proposition 5.7. Let S be a non-empty set and Γ be a set of binary relations on S such that S_Γ is a Γ-semihypergroup. Let $\Gamma_\cup = \{\alpha \cup \beta | \alpha, \beta \in \Gamma\}$. Then S_{Γ_\cup} is a Γ_\cup-semihypergroup.

Proof: We prove that S_{Γ_\cup} satisfies the conditions $(\Gamma \text{ SH1}), (\Gamma \text{ SH2})$ and $(\Gamma \text{ SH3})$ of Theorem 5.4. Suppose that $\theta', \varphi' \in \Gamma_\cup$. Then there exist $\alpha, \beta, \delta, \gamma \in \Gamma$, such that $\theta' = \alpha \cup \beta$ and $\varphi' = \delta \cup \gamma$. Since S_Γ is a Γ-semihypergroup, it follows that $\alpha \subseteq \alpha \delta \cup \alpha \gamma$ and $\beta \subseteq \beta \delta \cup \beta \gamma$. Thus

$$\theta' = \alpha \cup \beta \subseteq \alpha \delta \cup \alpha \gamma \cup \beta \delta \cup \beta \gamma = (\alpha \cup \beta)(\delta \cup \gamma) = \theta' \varphi'.$$

So the condition $(\Gamma \text{ SH1})$ holds.

Suppose that $x \in S$ is a semiouter element for the relation θ' and let $(a, x) \in \varphi' \theta'$. Then there exists $h \in S$ such that $(h, x) \notin \theta' \varphi'$. Thus x is a semiouter element for the relations $\alpha \delta, \alpha \gamma, \beta \delta$ and $\beta \gamma$. Since $(a, x) \in \varphi' \theta'$, it follows that $(a, x) \in \delta \alpha$, $(a, x) \in \alpha \gamma$, $(a, x) \in \beta \delta$ or $(a, x) \in \gamma \beta$. From the condition $(\Gamma \text{ SH2})$ for S_Γ we conclude that $(a, x) \in \delta$, $(a, x) \in \gamma$, $(a, x) \in \delta$ or $(a, x) \in \gamma$. Thus $(a, x) \in \delta \cup \gamma = \varphi'$ and the condition $(\Gamma \text{ SH2})$ holds.

Suppose that $x \in S$ is a semiouter element for the relations $\theta' \varphi'$ and φ' and let $(a, x) \in \varphi' \theta'$. Then there exist $h, t \in S$ such that $(h, x) \notin \theta' \varphi'$ and $(t, x) \notin \varphi'$. So x is a semiouter element for the relations $\alpha \delta, \alpha \gamma, \beta \delta, \beta \gamma, \delta$ and γ. Thus if $(a, x) \in \alpha \delta, (a, x) \in \alpha \gamma, (a, x) \in \beta \delta$ or $(a, x) \in \gamma \beta$, then from the condition $(\Gamma \text{ SH3})$ for S_Γ we conclude that $(a, x) \in \alpha \delta$, $(a, x) \in \alpha \gamma$, $(a, x) \in \beta \delta$ or $(a, x) \in \gamma \beta$, respectively, and the condition $(\Gamma \text{ SH3})$ holds. Therefore, S_{Γ_\cup} is a Γ_\cup-semihypergroup.

Let S_Γ be a hypergroupoid associated to a binary relation R. Let $\Gamma_\varphi = \{\alpha_i | i \in \mathbb{N}\}$. Now, for every $x, y \in S$ and $\alpha_i \in \Gamma_\varphi$ we define

$x\alpha_i y = \{z | (x, z) \in R^i \lor (y, z) \in R^i\} = L^i_x \cup L^i_y$.

Then S is a Γ_φ-hypergroupoid and denoted by S_{Γ_φ}. In the following we verify conditions such that S is a Γ_φ-semihypergroup.

Lemma 5.8. Let S_φ be a semihypergroup associated to a binary relation R. Then if $(z, t) \in R^{i+j}$ and $(x, t) \notin R^{i+j}$, then $(z, t) \in R^i$, for every $x, z, t \in S$ and $i, j \in \mathbb{N}$.

Proof: We prove by mathematical induction on $i + j$. If $i + j = 2$, $(z, t) \in R^2$ and $(x, t) \notin R^2$, then t is an outer element for R so $(z, t) \in R$.

www.SID.ir
Suppose that the result holds for \(i + j - 1 \). Now, let \((z, t) \in R^{i+j}\) and \((x, t) \notin R^{i+j}\). Then there exists \(s \in S \) such that \((z, s) \in R^{2}\) and \((s, t) \in R^{i+j-1}\). Thus \((x, s) \notin R^{2}\), that is, \(s \) is an outer element for \(R \) and so \((z, s) \in R\). Therefore, \((z, t) \in R^{i+j}\). Now, we have \((z, t) \in R^{i+j-1}\) and \((x, t) \notin R^{i+j-1}\) thus \((z, t) \in R^{i+j}\).

Lemma 5.9. Let \(S_{R} \) be a semihypergroup associated to a binary relation \(R \). Then \(S_{R}^{i} \) is a \(\Gamma_{R} \)-semihypergroup.

Proof: We prove the associativity law. Suppose that \(x, y, z \in S_{R} \) and \(\alpha_{i} \alpha_{j} \in \Gamma \). Then

\[
x_{\alpha_{i}}(y_{\alpha_{j}}z) = L_{x}^{i+j} \cup L_{x}^{i} \cup L_{x}^{j}
\]

and

\[
(x_{\alpha_{i}}y)_{\alpha_{j}}z = L_{x}^{i} \cup L_{x}^{i} \cup L_{x}^{j}
\]

If \(t \in L_{x}^{j+i} \) and \(t \notin L_{x}^{i+j} \), then by the previous lemma \(t \in L_{x}^{j+i} \subseteq (x_{\alpha_{i}}y)_{\alpha_{j}}z \). Therefore, \(x_{\alpha_{i}}(y_{\alpha_{j}}z) \subseteq (x_{\alpha_{i}}y)_{\alpha_{j}}z \). In a similar way we have the inverse inclusion.

Example 20. Let \(S = \{1,2,3\} \) and \(R = \{(1,2),(1,3),(2,2),(3,2)\} \). Then \(S_{R}^{i} \) is a semihypergroup. Let \(\Gamma_{R} = \{\alpha_{1}, \alpha_{2}\} \). Then we have the following hyperoperations:

<table>
<thead>
<tr>
<th>(\alpha_{1})</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1,3}</td>
<td>(S)</td>
<td>(S)</td>
</tr>
<tr>
<td>2</td>
<td>(S)</td>
<td>{2}</td>
<td>{2,3}</td>
</tr>
<tr>
<td>3</td>
<td>(S)</td>
<td>{2,3}</td>
<td>{2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\alpha_{2})</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S)</td>
<td>(S)</td>
<td>(S)</td>
</tr>
<tr>
<td>2</td>
<td>(S)</td>
<td>{2}</td>
<td>{2,3}</td>
</tr>
<tr>
<td>3</td>
<td>(S)</td>
<td>{2,3}</td>
<td>{2}</td>
</tr>
</tbody>
</table>

Then \(S_{R}^{i} \) is a \(\Gamma_{R} \)-semihypergroup.

6. Conclusion

In this work, we presented the concept of semiprime ideals in a \(\Gamma \)-semihypergroup and proved some results. Also, we introduced the notion of \(\Gamma \)-hyperrings and closed \(\Gamma \)-subhypergroups. Finally, we defined the concept of \(\Gamma \)-semihypergroups and \(\Gamma \)-hypergroups associated to a set of binary relations. Then we find the necessary and sufficient conditions on a set of binary relations \(\Gamma \) on a non-empty set \(S \) such that \(S \) becomes a \(\Gamma \)-semihypergroup or a \(\Gamma \)-hypergroup.

Our future research will consider \(\Gamma \)-semihypergroups associated to binary relations.

References

