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ABSTRACT

In this paper the heat and mass transfer characteristics of mixed convection about a circular cylindrical annulus in a
porous medium, by taking into account the Thermo-Diffusion (Soret) and Diffusion —Thermo (Dufour) effects have
been analyzed. The governing partial differential equations are transformed into a set of coupled ordinary differential
equations, which are evaluated numerically by using a finite element method. The velocity, temperature and
concentration profiles are presented graphically for various values of the parameters entering in to the problem. The
Nusslet number, Sherwood number and Shear stress are summarized in tabular form.
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1. INTRODUCTION

The flow of an incompressible, viscous fluid through a
porous annulus has drawn the attention of several
authors in the last three decades in view of its
technological applications (Berman 1958; Ram et al.
1977; Kapoor et al. 1960; Mahapatra 1973). It is well
known that some liquids attain their maximum density
only at a particular temperature range. At such
temperature range the equation of state which relates
the density and temperature may not be in the usual
linear form. In such case a non-linear density relation
may be best suited to describe the physical
phenomenon. For example, in dealing with flow of
water at 4°C it has been observed that Goren, S.L.
(1966) a quadratic density temperature variation (QDT)
gives a better understanding of the phenomenon in
comparison to the usual linear relation (LDT). Keeping
this in view a few authors have discussed the
hydrodynamic ~ convection  flows in  different
configurations using a non-linear density temperature
variation. This has been extended to hydro magnetic by
Sarojamma (1981) and Sivaprasad. A few of the
investigations include the effect of the additional heat
source which is either constant or temperature
dependent (Agaral et al. 1976; Bhargava et al. 1979;
Cunningham et al. 1980; Gilpin 1975; Roy 1972).
Reddy (2009) has analyzed the convective heat and
mass transfer flow with thermo-diffusion effects in
cylindrical annulus. Recently Padmavathi (2009) has

studied the finite element analysis of the convective
heat transfer through a cylindrical annulus with
quadratic temperature variation.

Coupled heat and mass transfer driven by natural
convection in a fluid saturated porous medium has
considerable interest in recent years, due to many
important applications in engineering and geophysical
applications. As many industrially and environmentally
relevant fluids are not pure, it is been suggested that
more attention should be paid to convective phenomena
which can occur in mixtures, but are not in common
liquids such as air or water. Applications involving
liquid mixtures include the costing of alloys, ground
water pollutant migration and separation operations. In
all of these situations, multi component liquids can
undergo natural convection driven by buoyancy force
resulting from simultaneous temperature and species
gradients. In the case of binary mixtures, the species
gradients can be established by the applied boundary
conditions such as species rejection associated with
alloys costing, or can be induced by transport
mechanism such as Soret (thermo) diffusion. In the case
of Soret diffusion, species gradients are established in
an otherwise uniform concentration mixture in
accordance with Onsager reciprocal relationship.
Thermal-diffusion known as the Soret effect takes place
and as a result a mass fraction distribution is established
in the liquid layer. The sense of migration of the
molecular species is determined by the sign of Soret
coefficient. The Soret effect for instance, has been
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utilized for isotope separation and in mixtures between
gases with very low molecular weight H, or He and the
medium molecular weight N, or air.

In this paper we discuss the free and forced convection
flow through a porous medium in a circular cylindrical
annulus with Thermal-Diffusion and Diffusion-Thermo
effects in the presence of Quadratic Temperature
Density variation, where the inner wall is maintained
constant temperature while the outer wall is maintained
constant heat flux and the concentration is constant on
the both walls. By using Galerkin finite element
analysis the coupled momentum, energy and diffusion
equations are solved.

2. FORMULATION OF THE PROBLEM

We consider free and forced convection flow of a
viscous fluid in a circular cylindrical annulus with
Thermal-Diffusion and Diffusion-Thermo effects in the
presence of Quadratic Temperature Density variation,
where the inner wall is maintained constant temperature
while the outer wall is maintained constant heat flux
and the concentration is constant on the both walls.
Both the fluid and porous region have constant physical
properties and the flow is a mixed convection flow
taking place under thermal buoyancy and molecular
buoyancy, uniform axial pressure gradient. The
Brinkman-Forchheimer-Extended Darcy model which
accounts for the inertia and boundary effects has been
used for the momentum equation in the porous region.
We take quadratic density variation in the equation of
state. Here, the thermo physical properties of the solid
and fluid have been assumed to be constant except for
the density variation in the body force <‘term
(Boussinesque approximation), and the solid particles
and fluid are considered to be in local thermal
equilibrium.  Since the flow is unidirectional, the
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equation of continuity reduces tog—zo, where ‘u’ is
Z

the axial velocity implies u=u(r). Also the flow is
unidirectional along the axial cylindrical annulus.
Making use of the above assumptions the governing
equations are

Equation of linear momentum
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Where u is the axial velocity in the porous region, T &
C are the temperature and concentrations of the fluid, k
is the permeability of porous medium, F is a function
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that depends on Reynolds number and the
microstructure of the porous medium and D, is the
Molecular diffusivity , Dy, is the coefficient of mass
diffusitivity, T,, is the mean fluid temperature, K; is the
thermal diffusion, C; is the concentration susceptibility,
C, is the specific heat, p is density, g is gravity, £ is the
coefficient of thermal expansion, " is the coefficient
of volume expansion .

The boundary conditions relevant to

u=0 & T=T;, C=¢(; at r=a (2.5)
u=0 & aalr:Ql,C:CO, at r=a+s (2.6)

D, K,Aca’

The axial temperature gradient Du=| -2 ‘1 —
C.C,AT 4
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and concentration gradient 3 are assumed to be
z
constant say A and B-respectively.

We now define the following non-dimensional

variables
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Using Egs. (2.5) & (2.6), Egs. (2.2) & (2.3) reduces to
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where
A=FD™ (Forchheimer number)
uC,v
P = 2 (Prandtl number)
-T,)a®
G =M (Grashof number)
v
1 aZ
D™ iy (Inverse Darcy parameter)
N, = Aa (Temperature gradient)
T1 _To
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2
Du = ( 2mC7K[AA'I(':2 J (Dufour Number)
sp
Sc = DL (Schmidt number)
1
Sr = (D”_;_K‘AiTj ( Soret number)
v m
N, = Ba (Non-dimensional concentration gradient)
Cl _Co

The corresponding boundary conditions are

u=0 ,6=0, C=1, at r=1

00

u=0,—=0Q,,C=0, at r=1+s 2.12
=0 (212)

3. ANALYSIS OF THE FLOW

To solve Egs. (2.9) to (2.11) together with the boundary
conditions (2.12), we make use of the Galerkin finite
element analysis with  quadratic  polynomial
approximation functions. The velocity, temperature and
concentration  profiles  has  been  discussed
computationally for different variations in governing
parameters by using Mathematica4.1.The Galerkin
methods has been adopted in the variational formulation
in each element to obtain the global coupled matrices
for the velocity , temperature and concentration in
course of the finite element analysis. The fundamental
steps comprising the finite element method are' now
summarized:

Phase 1] Discretization of the domain into elements
Phase 2] Derivation of element equations

Phase 3] Assembly of Element Equations

Phase 4] Imposition of boundary conditions

Phase 5] Solution of assembled equations

The shear stress are evaluated on the cylinder using the
formula

du
= ( E)r:l,hs

The rate of heat transfer (Nusselt number) are evaluated
on the cylinder using the formula

Nu — _[djj
dr ).,

The rate of mass transfer (Sherwood Number) is
evaluated using the formula
Sh:_(di)

d r r=11+s

4. DISCUSSION OF THE NUMERICAL RESULTS

In this analysis we investigate Thermo-Diffusion and
Diffusion-Thermo effects on convective heat and mass
transfer flow of a viscous fluid through a porous
medium in concentric cylinders with quadratic
temperature variation. The inner cylinder is maintained
at constant temperature and the outer wall is maintained

constant heat flux while the concentration is maintained
constant on both the cylinders. The axial flow is in
vertically downward direction, and hence the actual
axial flow u is negative and hence u » 0 indicates a
reversal flow. The velocity, temperature and
concentration distributions are shown in Figs. 1 to 18
for different values of the parameters G, D%, Sc, Sr, N,
and Du.

Figure 1 represents the variation of u with Grashof
number G. we notice that the actual axial flow enhances
with increase in G. The variation of u with Darcy’s
parameter D shows that lesser the permeability of
porous medium larger |u| everywhere in the flow region
(Fig. 2). From Fig.3 we notice that lesser the molecular
diffusitivity lager |u] in the flow region and attains
maximum at r = 1.5. From Fig.4 we conclude that the
variation of u with Soret parameter Sr experiences an
enhancement in the flow region. The variation of u with
Dufour parameter Du shows that |u] experiences an
enhancement with increase in Du < I and for further
higher values of Du > 1.3 it depreciates (Fig. 6). The
variation of u with-buoyancy ratio parameter N shows
that when the molecular buoyancy force dominates over
the thermal ' buoyancy force |u| experiences an
enhancement irrespective of the directions of the
buoyancy forces (Fig. 5).
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Fig.1. Variation of u with G, D™* =2X10°, Sc=1.3,
Sr=0.5, Du=0.5, N=1
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Fig.2. Variation of u with D}, G =2X10°, Sc=1.3,
Sr=0.5, Du=0.5, N=1
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Fig.3. Variation of u with Sc,G=2X10% D'=2X10°,
Sr=0.5, Du=0.5, N=1
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Fig.4. Variation of u with Sr, G=2X10%, Sc=1.3, D’
1=2X10° Du=0.5, N=1
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Fig.5. Variation of u with N, G=2X10%, Sc=1.3, Sr=0.5,
Du=0.5, D"=2X10°

The non-dimensional temperature (0) is. shown in Figs.
7 to 12 for different values of the parameters G, D%, Se,
Sr, N, and Du. It is found that the non-dimensional
temperature gradually increases. from its prescribed
value 0 on r =1 to attain its prescribed value 1 at r = 2.
The variation of 6 with G shows that an increase in G
depreciates 6 in the flow region (Fig. 7). From Fig. 8
we conclude that lesser- the permeability of porous
medium smaller the actual temperature in the flow
region. With respect to the variation of 8 with Sc, we
notice that lesser the -molecular diffusitivity lager the
actual temperature in.the flow region (Fig. 9).
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Fig.6. Variation of u with Du, G=2X10°, Sc=1.3,
Sr=0.5, D*=2x10°% N=1
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Fig.7. Variation of u with G, D™t =2X10°, Sc=1.3,
Sr=0.5, Du=0.5, N=1
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Fig.8. Variation of u with D, G=2X10°, Sc=1.3,
Sr=0.5, Du= 0.5, N=1

Figure 10 shows that the temperature experiences an
enhancement in the flow region with Sr and it attains
maximum at r = 1.8. When the molecular buoyancy
force dominates over the thermal buoyancy force it
experiences depreciation irrespective of the directions
of the buoyancy forces (Fig. 11). The variation of 6
with Dufour parameter Du shows that the actual
temperature experiences an enhancement in the flow
region with Du (Fig. 12).
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Fig.9. Variation of & with Sc., G=2X103, D-1=2X103,
Sr=0.5, Du=0.5, N=1
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Fig.10. Variation of & with Sr., G=2X103, Sc=1.3, D-
1=2X103, Du=0.5, N=1
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Fig.12. Variation of © with Du, G=2X103, Sc=1.3,
Sr=0.5, D-1=2X103, N=1

The non-dimensional concentration (¢) is shown in
Figs. 13 to 18 for different values of the parametric
values. It is found that the concentration gradually
increases for all values. The variation of ¢ with G
shows that it experiences an enhancement with increase
in G (Fig. 13). From Fig. 14 we notice that the actual
concentration ¢ increases with Darcy’s parameter D™,
With respect to the variation of ¢ with Sc, we find that
that lesser the molecular diffusitivity larger the actual
concentration for all Sc < 1.4 and for further higher Sc
> 1.8 it experiences a remarkable depreciation in the
flow region (Fig. 15). Figure 16 shows that the actual
concentration ¢ increases with increase in Soret
parameter Sr < 0.5 and for further higher Sr > 0.8 it
experiences a remarkable depreciation in the flow

region. From Fig. 17, we conclude that when the
molecular buoyancy force dominates over the thermal
buoyancy force it experiences depreciation irrespective
of the directions of the buoyancy forces. The variation
of ¢ with Dufour parameter Du shows that the actual
concentration ¢ experiences depreciation in the flow
region (Fig. 18).
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Fig.13. Variation of @ with G, D=2X10% Sc=1.3,
Sr=0.5, Du=0.5, N=1.
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Fig.14. Variation of ® with D, G=2X10%, Sc=1.3,
Sr=0.5, Du=0.5, N=1.
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Fig.17. Variation of @ with N, G=2X103, Sc=1.3,
Sr=0.5, D-1=2X10°
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