استراتژی گوناگونی بهینه گاوهای شیری با ظرفیت‌های مختلف تولید شیر در استان فارس

محمد بهشوده، سیدعباس سیدصالحی، مهدی محبی فاطمی

تاریخ دریافت: 26/9/1390
تاریخ پذیرش: 17/8/1391

چکیده

هدف از انجام این مطالعه تعیین استراتژی گوناگونی بهینه گاوهای شیری در استان فارس با استفاده از برنامه‌ریزی پویای بود. این گاوهای شیری در سال 1390 از گذشته تولید شیر دارند. در این مطالعه، از کاهش حجم این گاوهای شیری و شروع مهندسی حلالات شامل شیوه‌های مختلف تولید شیر به بهینه‌سازی مدل می‌پردازیم.

واژه‌های کلیدی: گاوهای شیری، گوناگونی بهینه، برنامه‌ریزی پویا، استان فارس

مقدمه

تولید شیر یک بخش بزرگ کشاورزی در اقتصاد ایران است به طوریکه کل گله‌های شیری متعلق ایران شمال 13440000 حیوان فاقد می‌شود و تولید شیر مربوط به این دام ها در حدود 3/2 میلیون تن می‌باشد. (1)

ساختار تولید شیر و همچنین شرایط اقتصادی-اجتماعی ایران و تولید شیر به طور جدی تا پیش آن‌های گرانه برای پیوست کاری مزرعه شیری مطالعه می‌کند. اگرچه افزایش تولید با بهبود کاری برخی نشان‌دهنده‌ای از اینجا حائز اهمیت از لحاظ اقتصادی و اجتماعی است که استراتژی‌های بهینه تولید شیر و تولید شیر مربوط به این دام به‌زیادی است. (2)

یافته‌ها و نتایج

1- استراتژی بهینه‌سازی عرضه‌های تولید شیر در استان فارس به طوریکه کل گله‌های شیری متعلق ایران شمال 13440000 حیوان فاقد می‌شود و تولید شیر مربوط به این دام ها در حدود 3/2 میلیون تن می‌باشد. (1)

2- استراتژی بهینه‌سازی عرضه‌های تولید شیر در استان فارس به طوریکه کل گله‌های شیری متعلق ایران شمال 13440000 حیوان فاقد می‌شود و تولید شیر مربوط به این دام ها در حدود 3/2 میلیون تن می‌باشد. (1)

3- استراتژی بهینه‌سازی عرضه‌های تولید شیر در استان فارس به طوریکه کل گله‌های شیری متعلق ایران شمال 13440000 حیوان فاقد می‌شود و تولید شیر مربوط به این دام ها در حدود 3/2 میلیون تن می‌باشد. (1)

4- استراتژی بهینه‌سازی عرضه‌های تولید شیر در استان فارس به طوریکه کل گله‌های شیری متعلق ایران شمال 13440000 حیوان فاقد می‌شود و تولید شیر مربوط به این دام ها در حدود 3/2 میلیون تن می‌باشد. (1)

5- استراتژی بهینه‌سازی عرضه‌های تولید شیر در استان فارس به طوریکه کل گله‌های شیری متعلق ایران شمال 13440000 حیوان فاقد می‌شود و تولید شیر مربوط به این دام ها در حدود 3/2 میلیون تن می‌باشد. (1)

6- استراتژی بهینه‌سازی عرضه‌های تولید شیر در استان فارس به طوریکه کل گله‌های شیری متعلق ایران شمال 13440000 حیوان فاقد می‌شود و تولید شیر مربوط به این دام ها در حدود 3/2 میلیون تن می‌باشد. (1)

7- استراتژی بهینه‌سازی عرضه‌های تولید شیر در استان فارس به طوریکه کل گله‌های شیری متعلق ایران شمال 13440000 حیوان فاقد می‌شود و تولید شیر مربوط به این دام ها در حدود 3/2 میلیون تن می‌باشد. (1)

8- استراتژی بهینه‌سازی عرضه‌های تولید شیر در استان فارس به طوریکه کل گله‌های شیری متعلق ایران شمال 13440000 حیوان فاقد می‌شود و تولید شیر مربوط به این دام ها در حدود 3/2 میلیون تن می‌باشد. (1)

9- استراتژی بهینه‌سازی عرضه‌های تولید شیر در استان فارس به طوریکه کل گله‌های شیری متعلق ایران شمال 13440000 حیوان فاقد می‌شود و تولید شیر مربوط به این دام ها در حدود 3/2 میلیون تن می‌باشد. (1)

10- استراتژی بهینه‌سازی عرضه‌های تولید شیر در استان فارس به طوریکه کل گله‌های شیری متعلق ایران شمال 13440000 حیوان فاقد می‌شود و تولید شیر مربوط به این دام ها در حدود 3/2 میلیون تن می‌باشد. (1)
بهبهان جایگزینی در حالت \(X_t \) و دو رشته \(X_t \) و \(X_t^{\prime} \) (نگهداری با یکدیگر) گونه‌شان و حاوی معتبر‌های تصادفی (ظرفیت تولید و وضعیت ابتدا) با احتمال وقوع \(k_t \) باید به صورت \(1 \times P_k(k_t) \) خواهد بود. علائم برای تسریع سیستم در دوره \(r_t \) وجود دارد.

\[
S_{t+1} = r_t(X_t, a_t, k_t) +
\]

\[
V(x_t) = \max_{a_t} \left\{ \sum_k P_k(k_t) \right\} \]
تولید ثبیت: تابع گاما تاکامل (1) به عنوان یک پارامترکار یافته است.

برای پارامتر ثبیت به طور همزمان با تناول مصرفی مورد استفاده قرار گرفته است.

\[
y_i = a e^{-b x_i} + \epsilon_i
\]

(7)

که در تولید ثبیت در روز (8) tPM از راست است. مقدار تولید a به عنوان ثبیت انتزاعی ثبیت شده یافته است. برخی تألیفات ثبیت شده با مدل نتیجه‌گیری صادق است که تولید ثبیت در روز tPM مانند یک توزیع یک‌پارامتری است. در این مدل نتیجه‌گیری ثبیت در روز tPM به‌طور کلی در می‌آید.

\[
x_{i+1}^{\text{parity}} = x_i^{\text{parity}} + 1, \quad \text{اگر} \quad a_i = 0
\]

(3)

اگر ثبیت در زمان a_i = 1 شود:

\[
x_{i+1}^{\text{parity}} = 1, \quad \text{اگر} \quad a_i = 1
\]

(4)

۳/۶ حتمی مدل برای این توابع توانهای مورد توجه است:\n
\[
p_i(x, \alpha) = p_{i+1}(x, \alpha)
\]

(9)

که در تولید ثبیت شده در روز tPM از راست است. مقدار ثبیت تغییرات احتمالات این مدل تغییر می‌کند با تغییرات فاصله با سال در این مدل نتیجه‌گیری ثبیت در روز tPM به‌طور کلی در می‌آید.

\[
BW = 682 \times [1 - 0.728 \times e^{(-0.002 x/age)}]^{1.27}
\]

(8)

از مدل‌های بالا، و با پیش فرض BW زمان a_i = 1 داشته باشیم. مقدار BW مانند یک توزیع یک‌پارامتری است. در این مدل نتیجه‌گیری ثبیت در روز tPM به‌طور کلی در می‌آید.

\[
p_i(x, \alpha) = p_{i+1}(x, \alpha)
\]

(9)

اگر نتیجه‌گیری ثبیت شده باشد:

\[
x_{i+1}^{\text{parity}} = x_i^{\text{parity}} + 1, \quad \text{اگر} \quad a_i = 0
\]

(3)

اگر نتیجه‌گیری ثبیت شده باشد:

\[
x_{i+1}^{\text{parity}} = 1, \quad \text{اگر} \quad a_i = 1
\]

(4)

۳/۶ حتمی مدل برای این توابع توانهای مورد توجه است:\n
\[
p_i(x, \alpha) = p_{i+1}(x, \alpha)
\]

(9)

که در تولید ثبیت شده در روز tPM از راست است. مقدار ثبیت تغییرات احتمالات این مدل تغییر می‌کند با تغییرات فاصله با سال در این مدل نتیجه‌گیری ثبیت در روز tPM به‌طور کلی در می‌آید.

\[
BW = 682 \times [1 - 0.728 \times e^{(-0.002 x/age)}]^{1.27}
\]

(8)

از مدل‌های بالا، و با پیش فرض BW زمان a_i = 1 داشته باشیم. مقدار BW مانند یک توزیع یک‌پارامتری است. در این مدل نتیجه‌گیری ثبیت در روز tPM به‌طور کلی در می‌آید.

\[
p_i(x, \alpha) = p_{i+1}(x, \alpha)
\]

(9)

اگر نتیجه‌گیری ثبیت شده باشد:

\[
x_{i+1}^{\text{parity}} = x_i^{\text{parity}} + 1, \quad \text{اگر} \quad a_i = 0
\]

(3)

اگر نتیجه‌گیری ثبیت شده باشد:

\[
x_{i+1}^{\text{parity}} = 1, \quad \text{اگر} \quad a_i = 1
\]

(4)
تپیسه‌کاپ و همکاران (۱۹۹۱) سال این، این تحقیقات برای ارزش، مؤثر و تولید استاندارد فالس نسبت به تهران می‌باشد.

تولید شیر: پارامترهای برآورده شده برای سه درصد و بسته به هر ارزش‌گذاری، کل شیر تولید شده در یک دوره را نشان می‌دهد. همین این سیاست‌ها به تولید سه‌فاصله شیر طبقه‌بندی شده‌اند.

d)07/2(

اهداف

در ۲۰۲۰ (کیلوگرم) ارزش کالس

(۱۲۷) (۱۲۹) (۱۹۵) (۱۹۷) (۱۵۲) (۱۵۳) (۱۲۷) (۱۲۶) (۱۲۸) (۱۲۹)

و همین‌طور، تولید و توزیع محصولات شیری در سال‌های اخیر به دنبال افزایش تقاضای سه‌فرآیندی شیر طبقه‌بندی شده‌اند.

امکان‌ها و تهدیدات

ارزش گذاری و ارزش‌گذاری در تولید، ارزش‌گذاری و ارزش‌گذاری در تولید

راه‌حل: ویژگی‌های طبیعی شیر و طبیعی

شیر و طبیعی

نتایج

از جمله این، این مشخصات در تولید و توزیع محصولات شیری به دنبال افزایش تقاضای سه‌فرآیندی شیر طبقه‌بندی شده‌اند.

با توجه به این، این جدول ویژگی‌های سه‌فرآیندی شیر طبقه‌بندی شده در تولید و توزیع محصولات شیری به دنبال افزایش تقاضای سه‌فرآیندی شیر طبقه‌بندی شده‌اند.
نتیجه‌گیری

یک مدل برنامه‌ریزی پویای برای تعیین استراتژی جایگزینی بهینه گاوهای شیری تحت شرایط خاص تولید و بازار فارس ایران استفاده شد. متوسط عمر گله تحت شرایط بهینه 2/2 سال بوده که به شدت تحت تأثیر قیمت تلیسه و ارزش بالاینده دام شیری است.

جدول ۳- ارزش حال خالص انتظاری و درآمد سالانه در هر دوره شیردهی با توجه به ظرفیت تولید گاو شیری

<table>
<thead>
<tr>
<th>عرضه دوره شیردهی</th>
<th>متوسط پرتویل</th>
<th>متوسط کم تولید</th>
<th>متوسط پرتویل</th>
<th>متوسط کم تولید</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۶/۲۰۳</td>
<td>۵/۶۲</td>
<td>۳۹/۲۳</td>
<td>۳۹/۲۳</td>
<td>۳۹/۲۳</td>
</tr>
<tr>
<td>۵۶/۲۳۸</td>
<td>۵/۱۱۱</td>
<td>۳۹/۲۴۴</td>
<td>۳۹/۲۴۴</td>
<td>۳۹/۲۴۴</td>
</tr>
<tr>
<td>۵۶/۲۲۴</td>
<td>۵/۱۸۴</td>
<td>۳۹/۳۷۴</td>
<td>۳۹/۳۷۴</td>
<td>۳۹/۳۷۴</td>
</tr>
<tr>
<td>۵۶/۲۸۴</td>
<td>۵/۱۹۴</td>
<td>۳۹/۵۸۹</td>
<td>۳۹/۵۸۹</td>
<td>۳۹/۵۸۹</td>
</tr>
<tr>
<td>۵۶/۲۷۱</td>
<td>۵/۱۹۴</td>
<td>۳۹/۵۸۹</td>
<td>۳۹/۵۸۹</td>
<td>۳۹/۵۸۹</td>
</tr>
<tr>
<td>۵۶/۳۸۴</td>
<td>۵/۱۹۴</td>
<td>۳۹/۵۸۹</td>
<td>۳۹/۵۸۹</td>
<td>۳۹/۵۸۹</td>
</tr>
</tbody>
</table>

مأخوذ: بافت‌های تحقیق

جدول ۴- تأثیر تغییر پارامترهای مدل بر عمر بهینه گله و ارزش حال خالص مدل

<table>
<thead>
<tr>
<th>تغییرات عمر گله (سال)</th>
<th>ارزش حال خالص (میلیون ریال)</th>
<th>سال‌های گذشته</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال‌های گذشته</td>
<td></td>
<td></td>
</tr>
<tr>
<td>قیمت شیر</td>
<td>۳۸/۲۴۵</td>
<td>۴/۱</td>
</tr>
<tr>
<td></td>
<td>۳۸/۲۴۵</td>
<td>۴/۱</td>
</tr>
</tbody>
</table>

مأخوذ: بافت‌های تحقیق

www.SID.ir
تصمیم گیری پایه گذاری گاوهای شیری به شدت تأثیر مدیریت واحد دامداری ایجاد می‌آورد و در بهترین شرایط ژنتیکی و
اموزشی برای مدل‌هایی که در بالابری با استراتژی مورد روی باید جایگزینی یا عضو به‌طور کلی توصیه می‌شود.
برخی دامداران وجود مشکلات پیدا کرده و کمیون تقدیمی واحد
تولیدی را جهت اجرای تصمیم پایه‌گذاری کرده‌اند. نوسان قیمت
نهاده‌های تولید دامداران را در بودجه‌بندی‌های مختلف با مشکل
واجی می‌سازد در این راستا نیاز است تا نهاده‌های دولتی در جهت
نیابت چه بیشتر بازی نهاده‌های تولید تلاش بیشتری نماید.

چگونگی تعیین پارامترهای جایگزینی گاو‌شیری در مدل
کیفیت تایپ را تحت تأثیر قرار می‌دهد. بررسی حالت زمان‌بندی
شد دام در این مطالعه ممکن بود به صورت هنگامی که همین البته
از سواد و زبان‌های زندگی دائم تحت تأثیر وضعیت تولید مثل باشد.

یک با توجه به عملکرد تیمی شده برای دام شیری در هر یک از
گروه‌های تولیدی و مقصدهای موجود دامداری‌ها مشارکت
شد که ۱۶ درصد از دام‌های تولیدی شده به حذف همچنان در
گله باقی مانده و به تولید ادامه می‌دهند. این در حالت است که عدد
به کارگیری تصمیم پایه‌گذاری گاوهای شیری کاهش سودآوری واحد
دامداری می‌شود.

منابع
1- انجمن غذا و سلامت ایران، ۱۳۶۰. ان. ر. ده. [دسترسی در
http://www.worldfood.ir
2- پایگاه مرکز آمار ایران. ۱۳۸۹. [دسترسی در
http://www.cs.org.ir
3- رحمان س. و یاکوز ک. ۱۳۸۳. [بروادر سطح و توزیع سرمایه‌ای
خوارزهای ایرانی. مجله تحقیقات اقتصادی، جلد ۷، صفحات ۳۱۸-۳۲۳.
4- وب سایت وزارت نیرودانی. ۱۳۹۰. [دسترسی در
http://www.moc.gov.ir
5- وزارت کشاورزی ایران. ۱۳۸۷. صنایع، لینی بر ریسک، تهران.
8- Boichard D.I. 1990. Estimation of the economic value of conception rate in
Insemination Policies for Holstein Cattle in the Southeastern Region of Brazil The Effect of Selling
Sci., 67:661–678.
11- De Vries A. 2004. Economics of delayed replacement when cow performance is
12- Dekkers J. 1991. Estimation of economic values for dairy cattle breeding goals: bias due to
13- DeLorenzo M.A. 1992. Optimizing model: Insemination, replacement, seasonal production,
New York.
17- Jalving A.W. 1992. The possible role of existing models in on farm decision support in dairy
Diss., Wageningen Agricultural Univ Wageningen, Netherlands.
19- Kalantari A.S.Y. 2010. Determining the optimum replacement policy for Holstein dairy herds in
21- McArthur A.T. 1973. Application of dynamic programming to the culling decision in

