Original Article

Symptoms of anxiety and depression: A comparison among patients with different chronic conditions

Noushin Bayat¹, Gholam Hossein Alishiri², Ahmad Salimzadeh³, Morteza Izadi⁴, Davoud Kazemi Saleh⁵, Maryam Moghani Lankarani⁶, Shervin Assari⁴

Abstract

BACKGROUND: Although patients with chronic diseases are at high-risk for symptoms of anxiety and depression, few studies have compared patients with different chronic conditions in this regard. This study aimed to compare patients with different chronic medical conditions in terms of anxiety and depression symptoms after controlling for the effects of socio-demographic and clinical data.

METHODS: This cross-sectional study enrolled 2234 adults, either healthy (n = 362) or patients with chronic medical conditions (n = 1872). Participants were recruited from the outpatient clinic of Baqiyatallah Hospital, Tehran, Iran. Patients had one of the following five medical conditions: coronary artery disease (n = 675), renal transplantation (n = 383), chronic hemodialysis (n = 68), rheumatoid conditions (rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus and ankylosing spondylitis) (n = 666) and viral hepatitis (n = 80). Independent factors included socio-demographic data, pain disability, and somatic comorbidities (Ifudu index). Outcomes included symptoms of anxiety and depression through Hospital Anxiety and Depression Scale (HADS). Two multinomial regression models were used to determine the predictors of anxiety and depression symptoms.

RESULTS: After controlling the effect of age, sex, educational level, comorbidities, disability and pain, rheumatoid arthritis and hepatitis were predictors of higher anxiety symptoms, while coronary artery disease and chronic hemodialysis were predictors of depression symptoms.

CONCLUSIONS: Although all chronic conditions may require psychological consideration; be that as it may, different chronic diseases are dissimilar in terms of their mental health need. Anxiety for rheumatoid arthritis and hepatitis as well as depression for coronary artery disease and chronic hemodialysis is more important.

KEYWORDS: Anxiety, Depression, Chronic Condition, Coronary Artery Disease, Renal Transplantation, Chronic Hemodialysis, Rheumatoid Conditions.

Patients with chronic diseases are at a higher risk for psychological distress.¹ On the other hand, symptoms of chronic disease are deteriorated in the presence of comorbid anxiety or depressive disorders.²,³ Psychological symptoms not only have a substantial negative impact on the quality of life,⁴ but also on the course and outcome of the chronic disorders⁵ as well as on mortality, morbidity, and service utilization.⁶–⁸ The mental distress also plays a role in increasing non-compliance with medical treatment recommendations.⁹ The Hospital Anxiety and Depression Scale (HADS) is designed specifically to detect symptoms of anxiety and depression in medically compromised patients.¹⁰ This questionnaire has been widely employed and trans-
lated into several languages; a translated-into-Persian version of HADS was also validated for use in Iran.11 This questionnaire was used in outpatient setting in coronary artery disease and renal transplantation.12-17

Unfortunately, there is a dearth of research comparing severity of anxiety and depression in patients with different chronic conditions. Those few studies having been hitherto conducted have only probed into two or three chronic conditions.18 The purpose of the present study was to evaluate the type of chronic somatic disorder which are independent predictor of anxiety and depression symptoms in patients with chronic disorders after controlling confounding, demographic data and health status.

\textbf{Methods}

\textit{Design and settings}

In this cross-sectional study, we compared the symptoms of anxiety and depression in patients afflicted with one of the five different chronic conditions and healthy subjects, all of whom were selected from the outpatient clinic of Baqiyatallah Hospital in 2006. Baghiatollah hospital was a governmental hospital that its patients came from all parts of the country and covered all insurance types. Patients belonged to all society levels with different income from poor to rich, thus these subjects can represent Iranian patients.

\textit{Patients and sampling}

Among 2234 participants enrolled, 1872 subjects were patients and 362 were healthy persons without any chronic illnesses. The five chronic medical conditions investigated were coronary artery disease (n = 675), renal transplantation (n = 383), chronic hemodialysis (n = 68), rheumatoid conditions (rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, ankylosing spondylitis) (n = 666), and viral hepatitis (n = 80). A consecutive sampling method was used to select patients. Healthy subjects were persons in all parts of the city that were selected from public area such as bus or subway stations. These subjects did not have any of the disease in list of comorbid conditions. The study was approved by the Ethics Committee of Baqiyatallah Hospital and was fully supported and funded by Baqiyatallah University of Medical Sciences.

\textbf{Process}

This study was conducted as a part of a large grant which was described elsewhere.19 Study team comprised several research assistants mostly general physicians supervised by psychiatrists, psychologists, internists, hepatologist, nephrologists, rheumatologist, and cardiologist. Data collection was done by trained nurses.

\textbf{Predictors}

We registered socio-demographic (age, sex, education level, living place, family income, and marital status), pain, disability and somatic comorbidities (Ifudu index). Patients were assisted in filling HADS if they needed help for any reason including their illiteracy.

Ifudu comorbidity index is a numerical scale to measure somatic comorbidity in patients and has 13 components for evaluation of 13 main body systems. The systems evaluated in this scale are as follows: 1) ischemic heart diseases, 2) other cardiovascular problems, 3) chronic respiratory diseases including asthma or COPD, 4) autonomic neuropathy, 5) other neurologic problems, 6) neuromuscular disorders, 7) infections including HIV, 8) pancreas and biliary diseases, 9) hematological disorders, 10) low back pain, spine or joint disorders, 11) visual disorders (decreased visual acuity up to complete blindness), 12) disorders in limbs and 13) genitourinary diseases. Each item takes a score ranging from 0 (absence of somatic comorbidity) to 3 (severe comorbidity).20

\textbf{Outcomes}

We measured anxiety and depression using the HADS, which is a widely used screening instrument for depression in medically ill patients.19 This questionnaire consists of 14 statements relevant to generalized anxiety (7 items) and depression (7 items). Each item has...
4 possible answers, with scores ranging from zero to 3. The maximum score is 21 for each scale. We also calculated a total HADS score; a higher score indicated more severe symptoms of anxiety and depression.10

Statistical Analyses
In each study sub-sample, scores of anxiety and depression symptoms were reported as mean ± standard deviation. Chi-square test was used to compare categorical socio-economic variables between study groups. Age was compared between study groups using ANOVA. To test the possible difference in anxiety and depression in chronic conditions after adjusting for socio-economic and health related variables, two multinomial regression model was used for answering this question. In this model, one of HADS anxiety and depression scores was selected respectively as dependent variable. All different chronic conditions and general population identified with a separate dummy variable, (1) if presented this condition and (0) for the rest. Marital status, sex, education level and any chronic condition were transformed to dummy variables. Because of high missing data in family income, insurance, job and living place, these were dropped from analyzing.

Forward (Likelihood ratio) procedure was used for the regression. Variables were entered to our model if they had significant level lower than 0.050. Statistical analyses were done using the SPSS software, version 13 (SPSS Inc. Chicago Il). P-value less than 0.050 considered as significant.

Results
The study population comprised 1365 (52.4%) males and 1242 (47.6%) females, of whom 2030 (77.9%) were married. With respect to education level, 1217 (46.7%) subjects held at least a high school diploma. These demographic characteristics were significantly different among chronic conditions (p < 0.001) (Table 1).

Demographic correlates of HADS scores
Age: Pearson correlation test failed to show significant correlation between age and anxiety symptoms in any of the study groups comprising the rheumatologic disorders (r = 0.057, p = 0.145), kidney transplant recipients (r = 0.043, p = 0.407), chronic hemodialysis (r = 0.069, p = 0.581), viral hepatitis (r = -0.087, p = 0.444), coronary artery disease (r = -0.037, p = 0.384), and healthy subjects (r = -0.036, p = 0.504).

Pearson correlation test revealed significant correlation between age and depression symptoms in rheumatologic disorders (r = 0.115, p = 0.003), kidney transplant recipients (r = 0.174, p = 0.001), and chronic hemodialysis (r = 0.278, p = 0.024). However, there was not such significant association in viral hepatitis (r = -0.072, p = 0.526), coronary artery disease (r = -0.047, p = 0.224) and healthy subjects (r = -0.050, p = 0.350).

Table 1. Demographic characteristics in patients with different chronic conditions and healthy subjects

<table>
<thead>
<tr>
<th>Age (year)</th>
<th>Healthy subjects</th>
<th>Coronary artery disease</th>
<th>Kidney Transplantation</th>
<th>Chronic hemodialysis</th>
<th>Rheumatologic conditions</th>
<th>Viral hepatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Male</td>
<td>32.41 ± 8.13</td>
<td>195 14.3</td>
<td>287 77.2</td>
<td>252 67.7</td>
<td>288 97.9</td>
<td>262 71.6</td>
</tr>
<tr>
<td>Female</td>
<td>56.44 ± 12.73</td>
<td>573 42</td>
<td>309 35.7</td>
<td>733 84.6</td>
<td>254 39.4</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>39.82 ± 13.25</td>
<td>322 23.5</td>
<td>234 47.7</td>
<td>352 71.7</td>
<td>210 54.8</td>
<td>352 92</td>
</tr>
<tr>
<td></td>
<td>55.17 ± 14.24</td>
<td>35 2.6</td>
<td>29 42.6</td>
<td>46 67.6</td>
<td>23 33.8</td>
<td>61 89.7</td>
</tr>
<tr>
<td></td>
<td>46.15 ± 12.71</td>
<td>127 9.3</td>
<td>269 40.4</td>
<td>546 82</td>
<td>152 22.8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>41.92 ± 10.33</td>
<td>113 8.3</td>
<td>89 61.8</td>
<td>101 70.1</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>P-value</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

* Value of cell was missing
NC: P-value was not calculated due to the data missing
Table 2. Adjusted odds ratio and 95% confidence interval based on multiple regression results of independent predictors of anxiety symptoms in patients with somatic chronic disorders

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>P-value</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.034</td>
<td>< 0.001</td>
<td>.021 .048</td>
</tr>
<tr>
<td>Sex</td>
<td>-0.998</td>
<td>< 0.001</td>
<td>-1.382 -.614</td>
</tr>
<tr>
<td>Education</td>
<td>0.418</td>
<td>0.030</td>
<td>.040 .796</td>
</tr>
<tr>
<td>Comorbidity Score</td>
<td>0.086</td>
<td>< 0.001</td>
<td>.050 .121</td>
</tr>
<tr>
<td>Disability</td>
<td>0.069</td>
<td>< 0.001</td>
<td>.059 .080</td>
</tr>
<tr>
<td>Pain</td>
<td>0.022</td>
<td>< 0.001</td>
<td>.614 1.382</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>1.290</td>
<td>< 0.001</td>
<td>.876 1.704</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>1.346</td>
<td>0.005</td>
<td>.412 2.279</td>
</tr>
</tbody>
</table>

Sex: Mean anxiety score was significantly different among male and female patients in coronary artery disease (5.85 ± 5.24 in males, 9.33 ± 6.24 in females, p < 0.001), but not those with chronic hemodialysis (7.65 ± 3.86 in males, 8.15 ± 4.50 in females, p = 0.665), kidney transplant recipients (6.18 ± 4.15 in males, 7.85 ± 5.50 in females, p = 0.193), rheumatologic disorders (7.44 ± 4.48 in males, 9.42 ± 4.18 in females, p = 0.433), viral hepatitis (7.71 ± 4.64 in males, 8.25 ± 3.62 in females, p = 0.155) and healthy subjects (5.47 ± 4.15 in males, 7.34 ± 4.59 in females, p = 0.144).

Mean depression score was significantly different among male and female patients with kidney transplant recipients (6.20 ± 4.22 in males, 6.44 ± 4.77 in females, p = 0.033), but not among those with coronary artery disease (4.58 ± 3.37 in males, 6.26 ± 3.26 in females, p = 0.410), chronic hemodialysis (8.00 ± 4.62 in males, 9.09 ± 4.78 in females, p = 0.825), rheumatologic disorders (6.32 ± 3.77 in males, 7.25 ± 3.83 in females, p = 0.936), viral hepatitis (5.53 ± 3.87 in males, 4.75 ± 3.37 in females, p = 0.138) and healthy subjects (5.14 ± 3.79 in males, 5.66 ± 3.82 in females, p = 0.608).

Multivariable regression analysis

A multivariable regression model was used to assess effects of chronic disorders type on anxiety in patients with chronic conditions. After entering variables into the model, age, sex, educational level, comorbidity score, disability, pain, Rheumatoid arthritis and hepatitis remained in the model. In the other word, some types of chronic disorder (Rheumatoid arthritis and hepatitis) cause anxiety in patients with chronic conditions.

A multivariable regression model was used to assess effects of chronic disorders type on depression in patients with chronic conditions. After entering variables into the multivariable model, age, educational level, disability, pain, coronary artery disease and chronic hemodialysis remained in the model. In the other word, among different chronic conditions, coronary artery disease and chronic hemodialysis were associated with higher depression symptoms.

Discussion

We found that Rheumatoid arthritis and viral hepatitis, in addition to age, sex, educational level, comorbidity score, disability and pain are predictors of anxiety while coronary artery disease and chronic hemodialysis in addition to age, educational level, disability and pain independently predicts symptoms of depression.

Table 3. Adjusted odds ratio and 95% confidence interval based on multiple regression results of independent predictors of depression symptoms in patients with somatic chronic disorders

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>P</th>
<th>Confidences interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.013</td>
<td>0.030</td>
<td>0.001 .025</td>
</tr>
<tr>
<td>Education</td>
<td>0.726</td>
<td>< 0.001</td>
<td>0.419 1.033</td>
</tr>
<tr>
<td>Disability</td>
<td>0.042</td>
<td>< 0.001</td>
<td>0.034 0.050</td>
</tr>
<tr>
<td>Pain</td>
<td>0.016</td>
<td>< 0.001</td>
<td>0.010 0.021</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>-0.158</td>
<td>< 0.001</td>
<td>-1.73 -1.144</td>
</tr>
<tr>
<td>Dialysis</td>
<td>1.722</td>
<td>< 0.001</td>
<td>1.379 2.066</td>
</tr>
</tbody>
</table>
Based on the literature, patients with chronic diseases tend to experience higher levels of depression21,22 and anxiety23,24 than healthy people. Koopmans and Lamers reported that the number of chronic conditions affect the level of psychological distress; however, they did not report the impact of various chronic conditions.25

We noted that the chronic viral hepatitis and rheumatoid arthritis were linked to higher anxiety than coronary artery disease, renal transplantation, chronic hemodialysis, osteoarthritis, systemic lupus erythematosus, and ankylosing spondylitis. High anxiety symptoms in hepatitis patients were reported elsewhere26 which may be due to the fact that the patients fear the spread of the disease or reaction of their relatives to the disease.

It was reported that rheumatologic patients are prone to severe depression and anxiety levels.27 We had previously showed that patients with rheumatoid arthritis have a poor quality of life.28,29 VanDyke et al. noted that individuals with rheumatoid arthritis exhibit higher levels of anxiety than healthy people.30 Waheed et al. reported that two-thirds of patients with chronic rheumatologic disorders suffer from a concomitant mood disorder including anxiety.31

Our results showed that coronary artery disease and chronic hemodialysis caused a higher depression in patients with chronic somatic conditions. According to the literature, depression symptoms are as the most common psychiatric abnormality in hemodialysis patients.32,33 This may lead to suicide at a rate of 100- to 400-fold greater than that in the general population.34 Other studies had similar findings that depression symptoms were seen more in patients with coronary artery disease.35,36

The present study had some limitations. First, we measured the symptoms of anxiety and depression, not the presence of anxiety or depression disorders based on diagnostic manuals. Second, we only enrolled patients with one of the five important chronic conditions; the inclusion of patients with other conditions could potentially affect our findings. Third, the study was restricted to a single center, making the external generalizability of our findings to other countries uncertain.

Conclusion

Although all chronic conditions do require psychological consideration, each chronic disease imposes a unique need. Anxiety in rheumatoid arthritis and hepatitis as well as depression in coronary artery disease and chronic hemodialysis is more important. This information can be used by physicians and health care providers.

Acknowledgement

Data analysis and also preparation of the first draft of the manuscript was done by Universal Network for Health Information Dissemination and Exchange (UNHIDE).

Conflict of Interests

Authors have no conflict of interests.

Authors’ Contributions

The authors had the same contribution in various procedures performed in this project.

References

