Quantification of Left-to-Right Shunt in Secundum Atrial Septal Defect by PISA Method

Maryam Esmaeilzadeh MD, Majid Maleki, MD, and Fereidoon Noohi, MD

Abstract

Background- The purpose of this study was to quantitate the degree of left-to-right shunt in patients with secundum atrial septal defect (2º ASD) with the PISA method and compare the results with the usual continuity equation. Although the PISA method has been used extensively for the quantitative measurement of regurgitant severity and valve area in patients with valvular regurgitation and stenosis, its use in patients with left-to-right shunts including ASD is yet to be evaluated extensively.

Methods We studied 48 consecutive patients with 2º ASD (mean age: 32.5±4 years; range:18-54 years). Left-to-right shunting was quantified by continuity equation and PISA method. The defect size was between 12 and 40 mm (mean: 26±6).

Results- QP/QS by continuity equation was between 1.7-4.5/1 (mean: 2.91), and by PISA method was between 1.6-4.8/1 (mean: 2.92), \[r = 0.92, PV= 0.0001 \]. There was no significant difference between the degree of shunt estimated by continuity equation and PISA method in terms of the defect size and the degree of shunt (PV = 0.179).

Conclusion- The PISA method could be used as an accurate alternative method to the continuity equation for quantitation of the degree of shunt flow in patients with 2º ASD (Iranian Heart Journal 2006; 7 (2):25-30).

Key words: echocardiography ▪ left-to-right shunt ▪ secundum ASD.

Accelerating laminar flow patterns have been observed proximal to stenotic, regurgitant, and shunt orifices by Doppler color flow mapping by transthoracic and transesophageal echocardiography.\(^1\)\(^-\)\(^5\) Flow rate can be calculated from these laminar flow patterns based on the conservation of mass, which assumes that fluid converges uniformly and radially toward a restrictive orifice, forming a series of concentric isovelocity layers. These isovelocity surfaces are hemispheric for orifices that are small relative to the region of acceleration.\(^6\)

Compared to the turbulent downstream jet, this more predictable pattern of flow in the proximal flow convergence region makes quantitation of regurgitant severity possible. By Doppler color flow mapping, the radius(\(r\)) of the isovelocity surface is measured as distance from the orifice to the point of color aliasing. Instantaneous flow rate can be calculated as the product of the aliasing velocity (\(V_A\)) at any of these hemispheric contours times the surface area (\(2 \pi r^2\)) of that shell:

\[
\text{Peak flow rate} = V_A (2 \pi r^2)
\]
The accuracy of the proximal flow convergence method is highly dependent on the precise measurement of the PISA radius, which requires high-resolution imaging and zoom magnification. Proximal flow acceleration thus depends on the severity of regurgitation and the aliasing velocity. Because flow rate is underestimated unless the Nyquist velocity is much less than the orifice velocity, the hemispheric assumption for calculating regurgitant flow rate cannot be used with larger Nyquist velocities. Consequently, the hemispheric model is most accurate with larger volume flow rates or with lower aliasing velocities. Accuracy can be improved by optimizing the aliasing velocity to better define the hemispheric contour.

Methods

Study population
From March 2003 to November 2004, we studied 48 consecutive patients with secundum ASD (33 women and 15 men; mean age: 32.5±4.2 years; range, 18-54 years), who were referred to center for the evaluation of suitability for device closure. The exclusion criteria were primum and sinus venosus type ASD, partial anomalous pulmonary venous connection and the other associated left-to-right shunts. Transthoracic and multiplane TEE was performed using a commercially-available ultrasound system (Aquisen Sequoia, Mountain View, CA 256). All the patients gave informed consent.

Echocardiographic studies
Comprehensive echocardiography and Doppler examination were performed in all the patients. The degree of left-to-right shunt was measured by standard continuity equation using LVOT and RVOT diameters in mid-systole (2-3 frames after valve opening) and PW Doppler study for measurement of velocity time integral of LVOT and RVOT. The QP/QS was measured using the following equation:

\[
\text{QP/QS} = \frac{\text{CSA RVOT} \times \text{VTI RVOT}}{\text{CSA LVOT} \times \text{VTI LVOT}}
\]

Transesophageal echocardiography was done by standard guidelines of the ASE. The atrial septum was examined in multiple planes to achieve three main objectives: assessment of the flow convergence regions (FCR) proximal to the atrial defect, assessment of the size of the atrial jet in the right atrium, and assessment of the size of the atrial defect by two-dimensional echocardiography. The defect size was measured at 0, 45, and 90 degrees and the greatest diameter was recorded as the defect size. By stepwise lowering of the color baseline, aliasing velocities can be reduced to 24-28 cm/sec. The radius of FCRs increases as the aliasing velocity is reduced. FCRs were identified immediately proximal to the defects on the left atrial side of the septum (Fig.1). The radius (r) of PISA was measured from the first aliasing limit to the orifice in the septum. According to the continuity principle, the flow rate across any isovelocity surface in FCR is equal to the flow rate through the orifice. Hence, the maximum instantaneous flow rate through the atrial defect is equal to \(2 \pi r^2 V_A\) (\(2 \pi r^2\) is the area of a hemisphere, and \(V_A\) is the velocity at a radial distance \(r\)). In the majority of cases, FCR was largest in size at the end of systole.
Transesophageal color flow imaging of flow convergence regions (FCRs) at standard color velocity (a) and by adjusting the Nyquist velocity (b). FCR can be seen to be semicircular, justifying the hemispherical model used in the calculation of flow rate.

Pulsed wave Doppler using high-repetition frequency was used to characterize the velocity profile of shunt flow in the right atrium. The sample volume was positioned in the color flow jet, close to the septal orifice. The peak flow velocity (V_p) of the jet and velocity time integral (VTI) were measured (Fig. 2).

The flow area of the ASD was calculated as maximum flow rate, divided by maximum flow velocity (Equation 1).

\[
\text{Equation 1: } \text{Flow (ASD)} = \frac{2\pi r^2 \times VA}{\text{Velocity (peak)}}
\]

\[
\text{Shunt Flow} = \text{Flow (ASD)} \times \text{VTI}
\]

\[
\text{QP} = QS + \text{ASD Volume (by PISA)}
\]

Statistical analysis

Data are presented as mean±SD. The correlation between continuous variables was determined by linear regression analysis. Student's t-test and the X^2 test were used as appropriate to compare variables. A value of $P<0.05$ was considered statistically significant. Statistical analysis was performed.
using a statistical computer software package for social sciences for Windows, (Release 10.01, SPSS Inc, Chicago, IL, USA).

Results

QP/QS was measured in all the patients by continuity equation except for two patients with associated pulmonary valve stenosis; however, there was no limitation for PISA measurement. By continuity equation QP/QS was between 1.7-4.5/1 (mean: 2.91), and by PISA method it was between 1.6-4.8/1 (mean: 2.92). There was no significant difference between the degree of shunt estimated by continuity equation and PISA method in terms of the defect size and the degree of shunt (PV= 0.179).

Shunt flow determined by PISA correlated closely (r=0.92, PV=0.0001) with that determined by continuity equation (Fig. 3).

Fig. 3. Comparison of shunt flow estimated by PISA method and continuity equation showed close correlation between two methods.

Discussion

This study shows that left-to-right atrial shunt can be accurately quantified by multiplane TEE, color flow mapping, and the principle of proximal flow convergence.

TEE combined with color flow mapping is the most sensitive technique for detecting atrial shunts.

Our study demonstrates that multiplane TEE is highly sensitive for estimating shunt flow across atrial defects, using the proximal flow convergence principle. The atrial septum separates a high pressure chamber (left atrium) from a relatively low pressure chamber (right atrium). The presence of a defect in the septum allows continuous flow throughout the cardiac cycle from left to right. Flow through the defect is unaffected by competitive flow as mitral valve flow is at right angles to shunt flow. This means that the atrial defect can be closely approximated to a planar orifice. Thus, the principles of flow convergence relating to laminar flow through a circular and planar orifice appear eminently applicable to atrial shunt flow. Hydrodynamic theory predicts the flow convergence regions (FCRs) to be hemispheric in such cases. The validity of this theoretical assumption appeared to be justified in practice. FCRs were found on TEE color flow mapping to be semicircular or nearly so on both transverse and longitudinal planes. This also accounts for the excellent correlation between measurements in these two orthogonal planes. Nonetheless, it is not necessary for orifices to be circular for this method to be valid. Rodriguez et al. demonstrated that volume flow rate in vitro can be calculated assuming hemispheric geometry, irrespective of orifice shape. Utsunomiya et al., on the other hand, found that the hemispherical model underestimates flow rate when orifices are noncircular. They used a hemi-elliptic model and concluded that differences in planar orifice shape do not affect calculation of volume flow rate. The use of multiplane TEE is a major strength to this study. High-frequency transducers improve spatial resolution and enable lower aliasing velocities to be used. This, coupled with baseline shifting of color flow maps, allows FCRs to be maximized in size. Another advantage of TEE is its ability to image the atrial septum at
right angles to the ultrasound beam. FCRs thus could be optimally visualized, and flow across the septum could be assessed accurately by pulsed Doppler without the need for angle corrections. Our study shows that shunt calculated by the flow convergence method correlates closely with that calculated by two-dimensional echocardiography and pulsed Doppler (continuity equation). The two-dimensional echocardiography method, in contrast, relies on accurate determination of LVOT and RVOT diameters. Furthermore, FCRs proximal to the defects are generally easy to visualize. In addition, the jets in the right atrium interact with flow from four sources: superior and inferior vena cava, coronary sinus, and tricuspid regurgitation. The latter was present in all of our patients, and the jets often were seen to be directed toward the atrial septum, where they interacted with atrial jets.

In some cases, tricuspid regurgitant jets entering the defects in the septum cause right-to-left shunting. These limitations are overcome by the flow convergence method. FCRs are zones of laminar accelerating flow proximal to the shunt orifice and thus are independent of factors operating in the distal receiving chamber. Bargiggia et al. studied 52 patients with mitral regurgitation and showed that the maximum regurgitant flow rate correlated closely (r=0.91) with angiographic grading. They also demonstrated a good correlation (r=0.93) with angiographic regurgitant volume in 15 patients. Moises et al. showed that maximal flow rate correlates closely with shunt flow through ventricular septal defects.

Using the flow convergence technique to assess atrial shunt should be relatively easy in clinical practice. Adjustments of color flow maps are not always necessary. In our study, all the patients had FCRs clearly visible even without adjusting the color flow maps. The larger the FCRs were, the greater were the magnitude of shunting.

The fact that the PISA method is valid as well is demonstrated by the good correlation between shunt derived by this technique and that calculated by continuity equation.

Conclusion

This study shows that the principle of flow convergence (PISA) combined with TEE provides accurate and easily-derived quantitative information on atrial shunt flow and that it could be an alternative method to the continuity equation. It is quick, reliable, and simple enough to be incorporated into routine clinical practice and highly recommended in patients with significant pulmonary regurgitation, pulmonary stenosis, and poor image view of the pulmonic valve.

References

5. Rittoo D, Sutherland GR, Shaw TR: Quantitation of left-to-right atrial shunting and defect size after balloon mitral commissurotomy using biplane transesophageal echocardiography, color flow mapping, and the principle of proximal
flow convergence [see comments]. Circulation 1993; 87: 1591-1603.

10. Rodriguez L, Flachskampf FA, Abascal VM, Levine RA, Harrigan P, Thomas JD, Regurgitant flow rate calculated by the proximal isovelocity surface area is independent of orifice shape. (abstract) Circulation 1989; 80(suppl II): II-570

