Histamine Potentiates Cyclosomatostatin-Induced Catalepsy in Old Rats

Ilya D. Ionov 1,*; Zoya A. Turgeneva 2

1Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
2Research Group, Timpharm Ltd, Moscow, Russia

*Corresponding author: Ilya D. Ionov, Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, P. O. Box: 17503, Moscow, Russia. Tel: +7-9160734902; Fax: +7-4954383883, E-mail: newrology@yandex.ru

Received: May 3, 2015; Accepted: May 6, 2015

1. Background

Bradykinesia and other extrapyramidal signs are the major features of Parkinson’s disease (PD). These signs are thought to be linked to an inhibition of the brain dopaminergic system (1, 2). However, the exact mechanism for the extrapyramidal features in PD remains far from fully understood.

In patients with PD, a reduced brain level of somatostatin (SOM) is frequently observed (3-7). In old Wistar rats, an inhibition of brain SOM receptors can produce catalepsy (8), an animal model of parkinsonian bradykinesia and rigidity. In light of these data, it appears that brain SOM deficiency may be of pathogenic relevance in PD.

Another PD-related sign is an increased brain level of histamine (9). This abnormality might influence the effect of SOM deficiency through modulation of SOM receptors. Such a possibility is supported by the observations of Puebla et al. who found an ability of exogenous histamine to decrease the SOM binding to its receptors in neurons (10, 11).

2. Objectives

The current study aimed to examine the influence of histamine on cataleptogenic action of the brain SOM deficiency in rats of different ages.

3. Materials and Methods

3.1. Animals

The research protocol was approved by the local animal care and use committee. The experiments were conducted with male Wistar rats of 100 - 110 and 736 - 767 days old. Since the mean lifespan for these animals was approximately 750 days (12), these animals were considered as young and old.

Rats were housed as described previously (13). Animals were randomly divided into groups of seven animals.

3.2. Drugs

Cyclo (7-aminoheptanoyl-Phe-D-Trp-Lys-Thr [Bzl]) (cyclosomatostatin, cycloSOM), histamine dihydrochloride (histamine), (±)-chlorpheniramine maleate (chlorpheniramine), ranitidine hydrochloride (ranitidine), thioperamide maleate (thioperamide), (±)-ketamine hydrochloride (ketamine), and xylazine hydrochloride (xylazine) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Gentamicin sulfate (Krka, Slovenia) and Polysporin triple antibiotic ointment (Pfizer Canada, Markham, Ontario, Archive of SID www.SID.ir
3.3. Surgery

The surgical operations were done under aseptic conditions. Additionally, before surgery each rat was injected gentamicin sulfate, 5 mg/kg intramuscularly. The animal was anesthetized with intraperitoneal administration of ketamine and xylazine (80 and 8 mg/kg, respectively) and placed in a Kopf stereotaxic apparatus (David Kopf Instruments, Tujunga, CA, USA). For i.c.v. administration, a 26-gauge stainless steel guide cannula (Plastics One Inc., Roanoke, VA, USA) was stereotaxically implanted into the third ventricle using the following coordinates from bregma: AP = 0.2 mm; V = 9.0 mm; L = 0 mm (16). The guide cannula was secured with screws and cranioplastic cement (Dentsply International, York, PA, USA). Leakage of the cerebrospinal fluid from the cannula during its implantation was used as the criterion for proper actions (17). Additionally, the location of the cannula track was verified during sectioning. The animals showing cannula misplacement were excluded from the study.

After placement, the guide cannula was sealed with a sterile dummy cannula (obturator, Plastics One Inc., Roanoke, VA, USA). The incision area was treated topically with Polysporin triple antibiotic ointment. The animals were allowed to recover for 10 days during which they were caged individually.

3.4. Intrabrain Injection Procedure

On the experiment day, the obturator was removed and a tested solution (a total volume of 5 µL) was injected using a handheld microsyringe and 33-gauge stainless steel internal cannula (Plastics One Inc. Roanoke, VA, USA).

3.5. Induction and Evaluation of Catalepsy

Catalepsy, a prolonged maintenance of an externally imposed abnormal posture, was assessed by means of the bar test (18, 19). The rat was gently placed with its forepaws on a wooden horizontal bar (1.5 cm in diameter × 25 cm long) positioned 7.5 cm above a wooden platform. The duration of catalepsy was measured as the time (s) the animal maintained an imposed posture. These test procedures were performed at 60, 120, 180 and 240 minutes after i.c.v. administration of the drug (s).

3.6. Statistical Analysis

Data are expressed as mean ± standard error of mean. Kolmogorov-Smirnov one-sample test was used to assess the normality of the data distribution. Since the normality assumption could not be accepted, comparisons were made with a two-way repeated-measure ANOVA on ranks followed by a non-parametric Tukey's test. Differences with a P value of less than 0.05 were considered statistically significant.

4. Results

In young rats, cycloSOM at the doses of 0.2 - 10.0 µg failed to produce catalepsy (no significant difference was observed between drug- and vehicle-treated groups, P > 0.05, n = 7, data not shown). In contrast, in the old rats cycloSOM at the dose of 10.0 µg initiated a marked cataleptic response (P < 0.05; n = 7), whereas smaller doses (0.2, 1.0, and 5.0 µg) were ineffective (no significant difference was observed between drug- and vehicle-treated groups, P > 0.05, n = 7) (Table 1). Histamine, at the doses of 1.0 and 10.0 µg, failed to induce catalepsy in both young and old rats (P > 0.05, n = 7; data not shown).

| Table 1. Cataleptic Response to Cyclosomatostatin in Old Rats a,b |
|---------------|------------------|------------------|------------------|
| Age Group and Drug, µg | The Duration of Catalepsy, s | 60 min | 120 min | 180 min | 240 min |
|-----------------|------------------|------------------|------------------|------------------|
| Old rats | 10.1 ± 1.3 c | 9.7 ± 1.1 c | 9.6 ± 1.3 c | 9.7 ± 1.4 c |
| Vehicle | | | | |
| CycloSOM | | | | |
| 0.2 | 9.7 ± 1.1 c | 9.1 ± 1.2 c | 9.2 ± 1.2 c | 9.4 ± 1.3 c |
| 1.0 | 10.0 ± 1.5 c | 10.7 ± 1.4 c | 10.3 ± 1.4 c | 9.7 ± 1.4 c |
| 5.0 | 14.1 ± 1.9 c | 13.6 ± 1.8 c | 12.8 ± 1.7 c | 11.7 ± 1.9 c |
| 10.0 | 17.3 ± 2.3 d | 15.8 ± 2.2 d | 15.0 ± 2.1 d | 15.4 ± 2.1 d |

a Measurements are expressed as Mean ± SEM (n = 7).
b The groups were compared at the same time points.
c Means followed by the same letter were not significantly different, P > 0.05.
d P < 0.05, significant difference from the vehicle-treated group.
The Duration of Catalepsy, s

<table>
<thead>
<tr>
<th>Age Groups and Drugs, µg</th>
<th>Young rats</th>
<th>Old rats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 min</td>
<td>120 min</td>
</tr>
<tr>
<td>Vehicle</td>
<td>9.1 ± 1.2</td>
<td>8.9 ± 1.2</td>
</tr>
<tr>
<td>CycloSOM, 1.0</td>
<td>9.9 ± 1.3</td>
<td>9.5 ± 1.3</td>
</tr>
<tr>
<td>CycloSOM, 5.0</td>
<td>10.2 ± 1.3</td>
<td>10.0 ± 1.4</td>
</tr>
<tr>
<td>CycloSOM, 1.0 + histamine, 1.0</td>
<td>10.4 ± 1.4</td>
<td>9.9 ± 1.4</td>
</tr>
<tr>
<td>CycloSOM, 5.0 + histamine, 1.0</td>
<td>10.8 ± 1.4</td>
<td>10.5 ± 1.4</td>
</tr>
<tr>
<td>CycloSOM, 1.0 + histamine, 10.0</td>
<td>10.6 ± 1.5</td>
<td>10.4 ± 1.4</td>
</tr>
<tr>
<td>CycloSOM, 5.0 + histamine, 10.0</td>
<td>11.1 ± 1.5</td>
<td>10.7 ± 1.4</td>
</tr>
</tbody>
</table>

Table 2. Cataleptic Response to Cyclosomatostatin and Histamine in Rats

5. Discussion

In young animals, co-administration of ineffective doses of cycloSOM (1.0 or 5.0 µg) and histamine (1.0 or 10.0 µg) induced no catalepsy. In old rats, however, the combination of cycloSOM and histamine (10.0 µg) caused catalepsy; the effect was dependent on the cycloSOM dose (cycloSOM at 5.0 µg was significantly more effective than at 1.0 µg, P < 0.05 or 0.01; n = 7, Table 2).

Thus, histamine renders the old animal susceptible to ineffective doses of cycloSOM. This effect appears to be dependent on the dose of histamine, as it was observed at a dose of 10 µg but not at 1 µg (Table 2). The sensitivity to histamine was reduced by chlorpheniramine and ranitidine but not thioperamide (Table 3). In all likelihood, histamine effect is at least partly mediated by histamine H1 and H2 receptor activation.
tin receptor blocker. In essence, a synergy between somatostatin deficiency and histamine took place in the initiation of catalepsy.

The mechanism of this synergy was obscure since very few data are available in the literature on somatostatin-histamine interaction in the brain. To the best of the authors knowledge, the only published studies on this point were those of Puebla et al. (1995, 1996) wherein an ability of exogenous histamine to reduce the affinity of somatostatin binding sites within neuronal membranes was found (10, 11). The nature of this effect was unclear.

Anyhow, the present results further support the participation of histamine in PD development. As already noted above, histamine level increased in the brain of the patients with PD. In rats, histamine selectively damages dopaminergic neurons of the substantia nigra (20), i.e., induces the main histopathological feature of PD. A blockade of histamine receptors enhances the antiparkinsonian effects of L-DOPA in primate model of PD (21). In the present experiments, histamine potentiated Parkinsonian-like effects of such a PD-related abnormality as the brain somatostatin deficiency. As it seems, all these findings should be taken into account when considering the mechanisms of PD.

Acknowledgements

Authors would like to thank Miss Larissa Shpilivaya for technical help and N. N. Gorev, head of department of neuropathology, for general support. Timpharm Ltd. (Moscow, Russia) is highly appreciated for material support of this research. Ilya D. Ionov is indebted to his late teachers, Igor Yefimovich Kovalev and Lev Aramovich Pireyuzyan.

Authors’ Contributions

Ilya D. Ionov: study concept and design, acquisition of data, analysis and interpretation of data, writing of the manuscript, administrative, technical, and material support, and study supervision. Zoya A. Turgeneva: acquisition of data and statistical analysis.

Funding/Support

This study was supported in part by Timpharm Ltd., Moscow, Russia (equipment and supplies).

References