SPECT/CT imaging in bone scintigraphy of a case of clavicular osteoma

Yuka Yamamoto1*, Yoshihiro Nishiyama1

1 Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan

Article type: Case Report

Article history:
Received: 3 Jan 2014
Revised: 14 Jan 2014
Accepted: 24 Jan 2014

Keywords: Bone scintigraphy, Osteoma, SPECT/CT, Tc-99m HMDP

Figure 1: Whole-body image showing a focus of intensely increased uptake in the clavicle.

Figure 2: SPECT/CT images providing precise localization of the abnormal uptake.

Introduction
Osteoma is a benign bone-forming tumor that usually arises in the craniofacial bones and rarely in the long bones (1, 2). Clavicular involvement is extremely rare (3, 4). The radiological appearance of osteoma is usually that of a round or ovoid, sharply margined lobulated mass in the proximal and middle portion of the clavicle (5). On bone scintigraphy, a significant focal increased uptake is noted, corresponding to the lesional site. We report a case of clavicular osteoma undergoing bone scintigraphy who demonstrated intense uptake in the clavicle, for which further SPECT/CT imaging was performed to characterize and localize the lesion.

Case Report
The present case was a 51-year-old woman who presented with a left clavicular mass. The tumor had grown very slowly since the age of 21 years when the lesion was detected incidentally on plain chest X-ray. Radiograph of the left shoulder showed a 70×35 mm, well-defined lobulated blastic mass in the proximal and midportion of the left clavicle. Bone scintigraphy was performed 4 hours after an intravenous injection of Tc-99m hydroxymethylene diphosphonate (HMDP). Whole-body image showed a focus of intensely increased uptake in the clavicle. Single photon emission computed tomography (SPECT/CT) imaging was also acquired and clearly showed intense uptake at the tumor site. Integrated SPECT/CT imaging supplies both functional and anatomic information about bone; the SPECT imaging improves sensitivity compared with planar imaging, the CT imaging provides precise localization of the abnormal uptake, and information on the shape and structure of the abnormalities improves the specificity of the diagnosis.

Discussion
Osteoma is a benign ostogenic tumor that usually arises in the craniofacial bones and rarely in the long bones (1, 2). Clavicular involvement is extremely unusual (3, 4). The radiological appearance of osteoma is usually that of a round or ovoid, sharply margined blastic mass with no associated soft tissue mass (5). On bone scintigraphy, a significant focal increased uptake is noted, corresponding to the lesional site. Integrated SPECT/CT imaging supplies both functional and anatomic information about bone; the SPECT imaging improves sensitivity compared with planar imaging, the CT imaging provides precise localization of the abnormal uptake, and information on the shape and structure of the abnormalities improves the specificity of the diagnosis.
Figure 1. Whole-body anterior image shows a focus of intensely increased uptake in the proximal and mid-portion of the left clavicle area of the blastic mass (6). The most important differential diagnosis is parosteal osteosarcoma. In comparison with parosteal osteosarcoma, osteoma usually presents as a homogeneous and dense lesion without an accompanying soft-tissue mass, cortical destruction, or intramedullary invasion (1). This is perhaps best appreciated on CT scans (1). Integrated SPECT/CT imaging supplies both functional and anatomic information about bone: the SPECT imaging improves sensitivity compared with planar imaging, the CT imaging provides precise localization of the abnormal uptake, and information on the shape and structure of the abnormalities improves the specificity of the diagnosis (7).

Figure 2. The transaxial CT image (upper section) identifies a dense lesion with well-defined contours in the left clavicle. There is intensely increased uptake on the corresponding SPECT image (middle section) and SPECT/CT fusion image (lower section).

References