A New Mathematical Approach based on Conic Quadratic Programming for the Stochastic Time-Cost Tradeoff Problem in Project Management

M.R. Peyghami, A. Aghaie \& H. Mokhtar

Mohammad Reza Peyghami, Department of Applied Mathematics, K.N. Toosi University of Technology, Tehran, Iran
Abdollah Aghaie, Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran
Hadi Mokhtari, Department of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran

ABSTRACT

Tradeoff between time and cost is an important issue in planning a project. This paper deals with a stochastic Time-Cost Tradeoff Problem (TCTP) in PERT network of project management. All activities are subject to linear cost function and assumed to be exponentially distributed. The aim of this problem is to maximize the project completion probability with a pre-known deadline to a predefined probability such that the required additional cost is minimized. A single path TCTP is constructed as an optimization problem with decision variables of activity mean durations. We then reformulate the single path TCTP as a cone quadratic program in order to apply polynomial time interior point methods to solve the reformulation. Finally, we develop an iterative algorithm based on Monte Carlo simulation technique and conic optimization to solve general TCTP. The proposed approach has been tested on some randomly generated test problems. The results illustrate the appropriate performance of our new approach.

1. Introduction

The Time-Cost Tradeoff Problem (TCTP) concerns a project scheduling problem where project total cost and project completion time are considered together. In scheduling a project, it is often important to expedite the duration of some activities through expending extra resources and therefore reduce the project duration with additional costs. This procedure can be conducted under either a fixed, available budget or a desirable threshold of project completion time. This problem is known as time/cost tradeoff problem, project crashing/compression problem and project expediting problem, in the project management literature. The main objective of the TCTP is to determine the optimal duration and cost that should be assigned to the activities such that the overall cost is minimized. This leads to a balance between the project completion time and the project total cost. For example, using additional resources, more productive equipments, highly skilled human resources or hiring more labor can save the time, but project direct cost could be increased. On the other hand, completing a project at a date after a desired due date may save some of budget or resources, but a penalty cost may be included. Equivalently, crashing an activity saves time but increases the activity’s cost.

Many researchers have investigated the deterministic TCTP, under various behaviors of the cost function such as discrete cost function [1,12,13,25,33], linear continuous cost function [10,17,29], nonlinear convex cost function [6,21], nonlinear concave cost function [15] and linear piecewise cost function [20,35]. Each pattern of the TCTP uses its own objective
function for model formulation. Some studies, under deterministic assumptions, have tried to determine the economical duration of project completion time via minimizing project total cost, including direct, indirect, and penalty cost functions [9,11]. On the other hand, the importance of on-time project delivery has lead to the proposed model of TCTP which minimizes the project completion time [8,18,30]. The objective of these models is to determine the optimal allocation of limited budget and resources to the activities. Moreover, some other authors discussed on the TCTP with multi criteria measures [35].

There are also some other studies related to the application of optimal control theory in the stochastic multi objective resource allocation problem for PERT networks [2,3]. Using the time discretization process, Azarot al. et al. [4] developed a new analytical procedure based on the multi objective TCTP in order to achieve the minimum total direct costs, the minimum mean of project completion time and the minimum variance of project completion time. Eshtehardian et al. [14] applied a hybrid approach based on the Fuzzy logic and GA to solve a new pattern of Time Cost Optimization (TCO) in a non-deterministic environment by means of the Pareto front. Recently, Li and Wang [22] have proposed the application of Radial Basis Function (RBF) neural network to solve the multi-objective time-cost tradeoff problem considering the risk element, in dynamic PERT networks. There are some recent studies presented in the context of time-cost tradeoff in project management. For example Kim et al. [37] considered a potential quality loss cost in tradeoff between time and cost. In another study, Mokhtar et al. [38] suggested a three dimensional tradeoff problem among time, cost and quality. Choi and Kwak [39] developed a decision support model for incentives/disincentives time-cost tradeoff. Besides, Yang [40] presented a distribution-free approach for stochastic time-cost tradeoff with focus on correlation and stochastic dominance. Zhang and Xing [41] discussed a fuzzy multi-objective particle swarm optimization for time-cost-quality tradeoff in construction. Recently, Hae et al. [42] suggested a model for stochastic project time-cost trade-offs with time dependent activity duration.

A number of research efforts have focused on TCTP modeling, under various assumptions, and applied an array of classic and computational methods to solve this important content of project management. But, in all of them, the conic formulation counterpart, which could be solved by polynomial time interior point methods, has not been investigated. The conic quadratic programming or Second-Order Cone Programming (SOCP) problem is to minimize or maximize a linear function over the intersection of an affine space with the Cartesian product of a finite number of second-order (Lorentz) cones. Linear programs, convex quadratic programs and quadratically constrained convex quadratic programs can all be formulated as SOCP problems, as can many other problems that do not fall into these three categories. Recently, this problem has received considerable attention for its wide range of applications (see e.g. [5,19,23,36]) and for being "easily" solvable in polynomial time via interior-point algorithms [26,27,28].

In this paper, we develop a new approach for solving a new stochastic model of TCTP based on SOCP formulation and Monte Carlo (MC) simulation technique. In our new model, all of the activities are subjected to linear cost functions and assumed to be exponentially distributed and the objective is to improve the project completion probability in a predefined due date based on a predefined probability. Our proposed model help projects planner to manage the project completion time more accurately and prevent the project tardiness.

A new structure of the general MC simulation technique has been employed to solve our new model. In every iteration of the MC technique, by considering the mean durations of activities as decision variables, a nonlinear optimization formulation of the problem would be constructed. This optimization problem has been reformulated as SOCP model in order to solve it in polynomial time interior point methods. Therefore, the following hybrid procedure based on MC simulation and SOCP model has been applied to allocate the optimal cost to the activities:

- Choosing the Most Critical Path (MCP) by using MC simulation technique.
- Using SOCP formulation to maximize the path completion probability for the selected MCP in previous step.

The paper is organized as follows: The mathematical model is presented in Section 2. Section 3 introduces the SOCP reformulation of the proposed single path TCTP. A general algorithm based on the SOCP problem and Monte Carlo simulation technique is proposed in Section 4 in order to apply the proposed approach for all paths. In Section 5, the characteristics of an illustrative example and result of experiments are presented. Some randomly generated examples have also been considered in Section 5. Finally, concluding remarks are presented in Section 6.

2. Mathematical Model

We use an Activity on Arrow (AOA) representation of project scheduling networks. Let $G = (V, A)$ be an acyclic AOA graph with arrow set A and node set V, where the source and sink node are denoted by s and t, respectively. In a project PERT network with m nodes and n activities, $V = \{v_1, v_2, ..., v_m\}$ represents the set of events and $A = \{a_1, a_2, ..., a_n\}$ represents the set of activities. The following notations are used throughout the paper:

(i, j): Activity with head node i and tail node j
A New Mathematical Approach based on Conic Optimization for Project Completion Probability Improvement

M.R. Peyghami, A. Aghaie & H. Moktar

\(t_{ij} \): Random variable of activity \((i, j)\) duration
\(x_{ij} \): The parameter of exponential distribution of activity \((i, j)\) duration (decision variable)
\(\mu_{ij} \): Mean duration of activity \((i, j)\)
\(\sigma_{ij} \): Standard deviation of activity \((i, j)\)
\(s_{ij} \): Cost slope of activity \((i, j)\)
\(T_d \): Project completion due date
\(\alpha \): Desired amount of project completion probability
\(u_{ij} \): Upper limit of mean duration of activity \((i, j)\)
\(l_{ij} \): Lower limit of mean duration of activity \((i, j)\)
\(n_r \): Number of activities on path \(r\)
\(L \): Total number of paths.
\(T_r \): Random variable of path \(r\) duration
\(\mu_r \): The mean duration of path \(r\)
\(\sigma_r \): The standard deviation of path \(r\)

Let \(\mu_{ij} = \sigma_{ij} = x_{ij} \)

Thus,
\[
\mu_r = \sum_{ij \in r} x_{ij} \\
\sigma_r = \sqrt{\sum_{ij \in r} x_{ij}^2}
\]

It is assumed that the distributions of activity durations are exponential with mean and standard deviation of \(x_{ij} \), for \(ij \in A \). Adding extra cost to the activity \((i, j)\) decreases the mean and variance of activities \(x_{ij} \) with a linear cost function and cost slopes of \(s_{ij} \).

After allocating the additional cost to the activities which lie on path \(r\), new expected value of activities will be \(x_{ij} \) and new probability of meeting the predefined \(\alpha \) is:

\[
\phi(Z) = \Pr\left(Z < \frac{T_d - \mu_r}{\sigma_r} \right) = \Pr\left(Z < \frac{T_d - \sum_{ij \in r} x_{ij}}{\sqrt{\sum_{ij \in r} x_{ij}^2}} \right) \geq \alpha
\]

We have to note that the equation (1) is key constraint of proposed model. It warrants prevention of tardiness by increasing the probability of meeting the predefined deadline. The following lemma provides an optimization model for increasing project completion probability on a certain path with minimum cost.

Lemma 1. For a given path \(r\), the project completion probability on path \(r\) in a predefined due date \(T_d\) based on a predefined probability \(\alpha\) with minimum cost can be improved by solving the following optimization problem:

\[
\min z = \sum_{ij \in r} s_{ij} (u_{ij} - x_{ij})
\]

s.t.
\[
Z_{1-\alpha} \leq T_d - \sum_{ij \in r} x_{ij}
\]
\[
l_{ij} \leq x_{ij} \leq u_{ij} \quad ij \in r
\]

where \(Z_{1-\alpha}\) denotes a point of normal standard distribution which covers a probability with amount of \(\alpha\) in its left side, and \(\| \|\) denotes the 2-norm (Euclidean vector norm).

Proof. Using the probability principles, we can rewrite the probability of meeting the predefined \(\alpha\) through the path \(r\), which is described as a probabilistic inequality in (1), as a non probabilistic inequality in the following form:

\[
T_d - \sum_{ij \in r} x_{ij} \geq Z_{1-\alpha}^2
\]

(2)

Where \(Z_{1-\alpha}\) denotes a point of normal standard distribution which covers a probability with amount of \(\alpha\) in its left side. Thus, in order to minimize the additional costs allocated to the activities on path \(r\), the cost function \(\sum_{ij \in r} s_{ij} (u_{ij} - x_{ij})\) should be minimized in presence of the inequality (2) and the upper and lower bound limitation on activities. Therefore, the proposed model for the path \(r\) can be formulated as:
\[\min \ z = \sum_{ij \in r} s_{ij} (u_{ij} - x_{ij}) \]
\[\text{s.t.} \quad T_d - \sum_{ij \in r} x_{ij} - \sum_{ij \in r} x_{ij}^2 \geq Z_{1-a} \]
\[l_{ij} \leq x_{ij} \leq u_{ij} \quad ij \in r \]

By rewriting the inequality (3) as
\[(T_d - \sum_{ij \in r} x_{ij}) \geq Z_{1-a} \sqrt{\sum_{ij \in r} x_{ij}^2} \]
the main model for the path \(r \) can be reformulated as:
\[\min \ z = \sum_{ij \in r} s_{ij} (u_{ij} - x_{ij}) \]
\[\text{s.t.} \quad Z_{1-a} \sqrt{\sum_{ij \in r} x_{ij}^2} \leq T_d - \sum_{ij \in r} x_{ij} \]
\[l_{ij} \leq x_{ij} \leq u_{ij} \quad ij \in r \]

This completes the lemma using the definition of the Euclidean vector norm.

Remark 1. It can be easily seen that the problem (4)-(5) is infeasible when the parameter \(T_d \) satisfies the following inequality:
\[T_d < l_{\min} \left(Z_{1-a} \sqrt{n_r - n_r} \right) \]
where \(l_{\min} = \min \{ l_{ij} \mid ij \in r \} \). Thus, in order to have a feasible problem on path \(r \), we assume that at least \(x = l \) satisfies the inequality (5), i.e.,
\[Z_{1-a} \sqrt{\sum_{ij \in r} l_{ij}^2 + \sum_{ij \in r} l_{ij}} \leq T_d \]

Of course this assumption is not restrictive from an engineering view, since we want to minimize the cost function (4) where its worst case happens in \(x = l \), when it is feasible.

3. SOCP Reformulation of Model for a Single Path TCTP

The proposed model of TCTP in (4)-(5) is a quadratically constrained program which attempts to maximize the path completion probability for path \(r \) using the minimum amount of resources. In this section we propose a SOCP reformulation of this problem in order to apply polynomial time interior point methods to solve it.

Let us briefly describe the SOCP problem and its dual (see more details in [5]). A second-order cone programming problem is defined as follows:
\[\min \ c^T x \]
\[\text{s.t.} \quad Ax - b \geq_K 0 \]

Where the cone \(K \) is a direct product of several ice-cream (second order or Lorenz) cones, i.e.,
\[K = L_{m_1} \times L_{m_2} \times \cdots \times L_{m_k} \]
where the ice cream cone \(L_m \) is defined as follows:
\[L_m = \left\{ x \in R^m \mid \sqrt{\sum_{i=1}^{m-1} x_i^2} \leq x_m \right\} \]

and the notation \(x \geq_K 0 \) stands for \(x \in K \). The ice-cream cone \(L_m \) is self-dual, i.e., \((L_m') = L_m \) (see [5]), where the dual cone \(K^* \) is defined as follows:
\[K^* = \left\{ y \in R^m \mid y^T x \geq 0, \quad \forall x \in K \right\} \]

Therefore, the problem dual to (CP) is:
\[\max \ \sum_{j=1}^{k} b_j^T y_j \]
\[\text{s.t.} \quad \sum_{j=1}^{k} A_j^T y_j = c \]
\[y_j \geq c_j, 0, \quad j = 1, \ldots, k \]

The SOCP problem is a direct extension of the linear programming problem. The weak duality theorem for the SOCP problem and its dual still holds as the linear programming case, but for the strong duality theorem, the SOCP problem and its dual should satisfy Slater regularity conditions (see [5]).

Now, let \(x = (x_1, \ldots, x_n) \) denotes the parameter of exponential distribution of all activity durations on path \(r \). We also denote the vectors of upper and lower limit mean duration of all activities on path \(r \) by \(u = (u_1, \ldots, u_n) \) and \(l = (l_1, \ldots, l_n) \), respectively, and the vector of cost slope of activities on this path by
\(s = (s_1, \ldots, s_n)^T \). Assume that \(e \in \mathbb{R}^n \) is the all one vector. Then, the constraint (5) can be written as follows:

\[
Z_{1-a} \|x\| \leq T_d - e^T x
\]
or equivalently

\[
\|x\| \leq \frac{1}{Z_{1-a}} (T_d - e^T x)
\] (7)

Therefore, we can rewrite the inequality (7) as follows:

\[
\left(\frac{1}{Z_{1-a}} \right) x \leq T_d - e^T x \in L^{n-1}
\]
or equivalently

\[
\left(\frac{1}{Z_{1-a}} \right) x \leq T_d - e^T x \leq 0 .
\]

Using these notations and removing the constant \(s^T u \) from the objective function (4), the optimization problem (4) can be rewritten as the following second order conic programming form:

\[
\begin{align*}
\min \quad & z = -s^T x \\
\text{s.t.} \quad & \left(\frac{1}{Z_{1-a}} \right) x \leq T_d - e^T x \leq 0 \quad (8)
\end{align*}
\]

\[l \leq x \leq u \]

Let

\[
M = \begin{pmatrix} I_n \cr -Z_{1-a}^{-1} e \end{pmatrix} \quad , \quad q = \begin{pmatrix} 0 \\
-Z_{1-a}^{-1} T_d \end{pmatrix} \in \mathbb{R}^{n+1}
\]

Thus, the problem (8) and its dual are as follows:

\[
\begin{align*}
\min \quad & z = -s^T x \\
\text{s.t.} \quad & Mx \geq q \geq 0 \\
& l \leq x \leq u
\end{align*}
\] (9)

\[
\max \quad w = q^T y_0 - u^T y_1 + l^T y_2
\]

\[\text{s.t.} \quad M^T y_0 + y_1 + y_2 = -s \]

\[y_1, y_2 \geq 0, \quad y_1, y_2 \in \mathbb{R}^n, \quad y_0 \geq u^T 0 \]

Now, we have the following theorem for solvability of the problem (9).

Theorem 1. Suppose that the parameter \(T_d \) is given so that it satisfies (6). Then, the dual problem (10) is bounded above and strictly feasible, and therefore the primal problem (9) is solvable and the optimal values of both problems are equal.

Proof. Using (6), one can easily see that \(x = I \) is a feasible solution for the problem (9). Thus, using weak duality theorem, the dual problem (10) is bounded above. Now, we construct a strict feasible solution for the dual problem (10). Let \(\xi \) be a positive constant and

\[
y_0 = \begin{pmatrix} 0 \\
0 \end{pmatrix} \in \mathbb{R}^{n+1}, \quad y_1 = s \in \mathbb{R}^n, \quad y_2 = Z_{1-a}^{-1} \zeta \in \mathbb{R}^n .
\]

It can be easily verified that the vector \(\begin{pmatrix} y_0^T, y_1^T, y_2^T \end{pmatrix} \) is a feasible solution for the dual problem (9). Moreover,

\[
y_0 \succ 0, \quad y_1 > 0, \quad y_2 > 0
\]

i.e., the vector \(y_0, y_1, y_2 \) is a strictly feasible solution of the dual problem (10). Therefore, using Conic Duality Theorem, the primal problem (9) is solvable (i.e., it attains its minimum value) and the optimal values of the both problems are equal. Due to the solvability of the problem (8), it can be easily solved by using available SOCP computer packages such as CVX, SeDuMi, CPLEX, etc in the polynomial time iteration complexity.

4. Determining Priority of Paths

In Section 3, the SOCP formulation of single path TCTP has been developed. Using this model, we can improve the completion probability of paths individually, while improving the project completion probability, all paths should be improved. Therefore, it is necessary to develop a procedure to rank the paths with respect to their criticality. By using this procedure, the SOCP formulation would be applied to the MCPs before other paths via a general iterative algorithm.
For this purpose, a measure based on criticality concept has been applied. The Path Criticality Index (PCI) is the probability that the duration of path is greater than or equal to the duration of other critical paths [24]. In other words, PCI gives the probability that the path is the Most Critical Path (MCP). The maximum amount of the PCI corresponds to the MCP.

We have to note that in PERT networks, numerous paths have the potential of becoming critical. In other words, there is not a unique critical path in stochastic networks, but we have “most critical path” at a given setting of network.

The classical approach ignores this fact and uses a critical path that results in an extremely optimistic estimate for the probability of completion time. In general, this path is not the most critical path in the sense that it does not provide the smallest estimate for the probability of completing the project on time. Hence, in this paper, we shorten the paths in order of their criticalities until the required project completion probability is satisfied for that path. In each iteration of the algorithm, the most critical path is selected and the optimal activities are chosen on it to be assigned additional resources.

This procedure continued until all the paths meet the predefined completion probability. During crashing one path, some of the activities of other paths may be crashed (because of joint activities), which may decrease the criticality of those paths.

Recently, some researchers attempted to present some methods for calculating the PCI. Martin [24] defined the concept of the path criticality in PERT networks. But he did not present any method to compute its value. Van Slyke [34] calculated the criticality indices of the PERT networks by using the Monte Carlo simulation technique. Some researchers proposed application of conditional Monte Carlo simulation to compute the PCI [7,31]. Soroush [32] described an exact solution approach for determining the MCP based on concept of stochastic domination.

Fatemi Ghomi and Temouri [16] proposed a new analytical method for computing the PCI and activity criticality index for PERT networks with discrete random variables of activity durations.

Here, we employ the Monte Carlo simulation technique for computing the MCP. Therefore, we need a large number of simulation runs to distinguish the MCP in each iteration.

In order to compute the PCI, in each run, we first assign a sample value to every activity from its related distribution and then estimate the PCI using statistical analysis of obtained information (e.g. see this procedure in Table 3 related to the illustrative example in Section 5).

Assume that we have \(N \) simulation runs and \(\Psi_r \) represents a random variable corresponding to path \(r \). It represents the number of simulation runs in which path \(r \) is the longest path. Therefore, \(\Psi_r \) follows a binomial distribution with parameters of \((N, P_r) \), where \(P_r \) represents the probability of the criticality for path \(r \). According to the above mentioned assumptions, the MCP can be computed by estimating the \(P_r \) using \(\hat{P}_r \), which is defined as follows:

\[
PCI_r = \hat{P}_r = \frac{\Psi_r}{N}
\]

Therefore, the maximum value of PCIs defines the MCP, i.e.,

\[
MCP = \{ r \mid PCI_r = \max_{h=1,2,...,L} PCI_h \}
\]

Now, we can outline the flowchart of our proposed SOCP approach for solving the stochastic TCTP as it is shown in Figure 1.

5. Illustrative Example

This section is organized in two parts. First, a numerical example is described step by step to illustrate the process of proposed SOCP approach. Detailed information is presented in the form of tables and figures to clear the method. Then, 20 randomly generated test problems of different size are presented to investigate the performance of the presented SOCP approach for stochastic TCTP. All computational results were obtained using MATLAB 7.6.0. We also use SeDuMi for solving the SOCP problem in each step.

We consider a PERT network with 10 nodes, 14 independent activities and 10 interrelated paths to demonstrate how the presented approach optimally improves the project completion probability. Figure 2 shows the AOA format of example network and characteristics of its activities and paths are presented in Tables 1 and 2.

<table>
<thead>
<tr>
<th>Tab. 1. Characteristics of example</th>
<th>Activity No</th>
<th>Activity</th>
<th>(s_{ij})</th>
<th>(l_{ij})</th>
<th>(u_{ij})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-1</td>
<td>225</td>
<td>8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0-3</td>
<td>202</td>
<td>12</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0-2</td>
<td>214.5</td>
<td>12</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1-4</td>
<td>189</td>
<td>0.5</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2-3</td>
<td>253.25</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2-5</td>
<td>198.25</td>
<td>28.5</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3-6</td>
<td>285.20</td>
<td>42</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4-7</td>
<td>291</td>
<td>13</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4-6</td>
<td>280</td>
<td>11.5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5-8</td>
<td>271.20</td>
<td>24</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6-9</td>
<td>232</td>
<td>9.5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6-8</td>
<td>161.50</td>
<td>17</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7-9</td>
<td>209.20</td>
<td>13.5</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8-9</td>
<td>321.20</td>
<td>8.5</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Approximately computed using the Central Limit Theorem. This value is concerned with the situation that all activities are planned in the upper bound of their distribution parameters \(u_j \). It is also assumed that the desired amount of project completion probability \(\alpha \) is equal to 0.90. The proposed method attempts to improve the initial probability \(0.578 \) to a desired value of probability \(0.90 \). The results of proposed model for presented example are organized in Tables 3 and 4.

The MCPs have been marked by symbol * in Table 3. As it seems, the MCP has been selected in each replication of algorithm, using 10,000 Monte Carlo simulation runs. Then, the SOCP model (developed in Section 3) has been applied to the selected paths to improve the amount of \(P_h \) (path \ h \) completion probability) from its primary value to \(\alpha \). According to Table 3, the paths 7, 1, 10 and 3 are selected as MCP, respectively, in 4 iterations of algorithm. After improving the selected MCP (applying the developed SOCP model for the MCP), it is eliminated from unimproved paths list (the \(C \) set) in each step. This procedure is repeated until all of the paths satisfy the desired predefined probability \(0.90 \). The optimum objective function (additional direct cost) and obtained project completion probability are computed \(21.745 \) thousands and 0.90, respectively. As we see, Table 3 is organized for 4 above mentioned paths, only. This case may result from the following potential reasons.

1) Other paths satisfy the \(\alpha \) in their primary state \((u_j) \) and do not need for improvement (initial \(P_h > \alpha \)).

2) Other paths do not satisfy \(\alpha \) in their primary state, but interrelation between them and above mentioned paths (7, 1, 10 or 3) led to their appropriate improvement, formerly.

Table 2. Paths definition of example

<table>
<thead>
<tr>
<th>Path No.</th>
<th>Activity sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-4-8-13</td>
</tr>
<tr>
<td>2</td>
<td>1-4-9-11</td>
</tr>
<tr>
<td>3</td>
<td>1-4-9-12-14</td>
</tr>
<tr>
<td>4</td>
<td>2-7-11</td>
</tr>
<tr>
<td>5</td>
<td>2-7-12-14</td>
</tr>
<tr>
<td>6</td>
<td>3-5-7-11</td>
</tr>
<tr>
<td>7</td>
<td>3-5-7-12-14</td>
</tr>
<tr>
<td>8</td>
<td>3-6-11</td>
</tr>
<tr>
<td>9</td>
<td>2-6-12-14</td>
</tr>
<tr>
<td>10</td>
<td>3-6-12-14</td>
</tr>
</tbody>
</table>

Fig. 1. Flowchart of the proposed approach for solving the developed TCTP

The objective is to obtain the optimal allocated budget to activities for improving project completion probability from a risky value to a predefined confident level. It is assumed that the time unit is in weeks and the cost is in thousands. According to the presented characteristics of the example, the initial value of project completion probability at \(T = 165 \) is equal to 0.578, which can be approximately computed using the Central Limit Theorem. This value is concerned with the situation that all activities are planned in the upper bound of their distribution parameters \(u_j \). It is also assumed that the desired amount of project completion probability \(\alpha \) is equal to 0.90. The proposed method attempts to improve the initial probability \(0.578 \) to a desired value of probability \(0.90 \). The results of proposed model for presented example are organized in Tables 3 and 4.

The MCPs have been marked by symbol * in Table 3. As it seems, the MCP has been selected in each replication of algorithm, using 10,000 Monte Carlo simulation runs. Then, the SOCP model (developed in Section 3) has been applied to the selected paths to improve the amount of \(P_h \) (path \ h \) completion probability) from its primary value to \(\alpha \). According to Table 3, the paths 7, 1, 10 and 3 are selected as MCP, respectively, in 4 iterations of algorithm. After improving the selected MCP (applying the developed SOCP model for the MCP), it is eliminated from unimproved paths list (the \(C \) set) in each step. This procedure is repeated until all of the paths satisfy the desired predefined probability \(0.90 \). The optimum objective function (additional direct cost) and obtained project completion probability are computed \(21.745 \) thousands and 0.90, respectively. As we see, Table 3 is organized for 4 above mentioned paths, only. This case may result from the following potential reasons.

1) Other paths satisfy the \(\alpha \) in their primary state \((u_j) \) and do not need for improvement (initial \(P_h > \alpha \)).

2) Other paths do not satisfy \(\alpha \) in their primary state, but interrelation between them and above mentioned paths (7, 1, 10 or 3) led to their appropriate improvement, formerly.

Fig. 2. AOA network of example

![AOA network of example](image-url)
Tab. 3. Results of applying proposed SOCP approach to considered example (10,000 simulation runs)

<table>
<thead>
<tr>
<th>Path No.</th>
<th>Iteration 1</th>
<th>Iteration 2</th>
<th>Iteration 3</th>
<th>Iteration 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCI</td>
<td>P_h</td>
<td>PCI</td>
<td>P_h</td>
</tr>
<tr>
<td>1</td>
<td>0.1624</td>
<td>0.780</td>
<td>0.1688 *</td>
<td>0.900</td>
</tr>
<tr>
<td>2</td>
<td>0.0319</td>
<td>0.910</td>
<td>0.0316</td>
<td>0.934</td>
</tr>
<tr>
<td>3</td>
<td>0.1410</td>
<td>0.847</td>
<td>0.1417</td>
<td>0.879</td>
</tr>
<tr>
<td>4</td>
<td>0.0177</td>
<td>0.949</td>
<td>0.0175</td>
<td>0.949</td>
</tr>
<tr>
<td>5</td>
<td>0.0705</td>
<td>0.905</td>
<td>0.0681</td>
<td>0.905</td>
</tr>
<tr>
<td>6</td>
<td>0.0519</td>
<td>0.946</td>
<td>0.0552</td>
<td>0.946</td>
</tr>
<tr>
<td>7</td>
<td>0.2175</td>
<td>0.900</td>
<td>-</td>
<td>0.900</td>
</tr>
<tr>
<td>8</td>
<td>0.0314</td>
<td>0.837</td>
<td>0.0302</td>
<td>0.837</td>
</tr>
<tr>
<td>9</td>
<td>0.1112</td>
<td>0.778</td>
<td>0.1136</td>
<td>0.778</td>
</tr>
<tr>
<td>10</td>
<td>0.1645</td>
<td>0.708</td>
<td>0.1582</td>
<td>0.708</td>
</tr>
</tbody>
</table>

MCP | 7 | 1 | 10 | 3
\[\sigma^*\]
13090 | 12976 | 14144 | 11365

Table 4 shows the optimum decision variables in each step.

Tab. 4. The optimum decision variables obtained by the proposed SOCP

<table>
<thead>
<tr>
<th>Activity</th>
<th>MCP</th>
<th>X^*_{ij}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>0-1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0-3</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0-2</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>1-4</td>
<td>28</td>
<td>21.73</td>
</tr>
<tr>
<td>2-3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2-5</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>3-6</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>4-7</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>4-8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>5-8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>6-9</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>6-8</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>7-9</td>
<td>40</td>
<td>28.28</td>
</tr>
<tr>
<td>8-9</td>
<td>18.27</td>
<td>18.27</td>
</tr>
</tbody>
</table>

CPU time (SeDuMi) | 0.4524 | 0.4992 | 0.4516 | 0.4212 | ------- |
CPU time (LINGO) | 0.8726 | 2.6381 | 1.3892 | 0.9175 | ------- |

There are not any standard test problems for the developed model of stochastic TCTP in the published literature to compare our results. Nonetheless, 20 randomly generated problems have been considered and the results of the proposed SOCP's objective function are presented in Table 5. The problems 17-20 in the Table 5 are single path problems with random data, and therefore, there is no need to run Monte Carlo simulation to detect MCP in these problems. These problems are given to show the effect of conic reformulation (8). We solve the problems 17-20 by LINGO and SeDuMi software, simultaneously. The CPU time for these problems by LINGO are 3240, 951, 3325 and 2525 seconds, respectively, while the SeDuMi solves all of those in less than 4 seconds.
Tab. 5. The SOCP’s objective function for 20 randomly generated problems

<table>
<thead>
<tr>
<th>Problem No.</th>
<th>Number of Activities</th>
<th>Number of Nodes</th>
<th>Number of Paths</th>
<th>α</th>
<th>T_d</th>
<th>Optimum Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>0.70</td>
<td>50</td>
<td>2562.34</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>0.78</td>
<td>80</td>
<td>1985.48</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>0.88</td>
<td>100</td>
<td>2358.01</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>0.95</td>
<td>120</td>
<td>2405.53</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>0.45</td>
<td>50</td>
<td>3872.02</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>0.70</td>
<td>80</td>
<td>4004.22</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>0.85</td>
<td>100</td>
<td>3959.04</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>0.90</td>
<td>120</td>
<td>4016.95</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>0.63</td>
<td>100</td>
<td>6123.62</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>0.78</td>
<td>120</td>
<td>5984.00</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>0.88</td>
<td>140</td>
<td>6008.35</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>0.95</td>
<td>180</td>
<td>5893.16</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>25</td>
<td>64</td>
<td>0.36</td>
<td>80</td>
<td>12364.45</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>25</td>
<td>64</td>
<td>0.58</td>
<td>100</td>
<td>13131.49</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>25</td>
<td>64</td>
<td>0.75</td>
<td>120</td>
<td>13002.98</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>25</td>
<td>64</td>
<td>0.95</td>
<td>150</td>
<td>12165.57</td>
</tr>
<tr>
<td>17</td>
<td>80</td>
<td>81</td>
<td>1</td>
<td>0.9</td>
<td>3500</td>
<td>4975.10</td>
</tr>
<tr>
<td>18</td>
<td>85</td>
<td>86</td>
<td>1</td>
<td>0.9</td>
<td>4200</td>
<td>3325.00</td>
</tr>
<tr>
<td>19</td>
<td>100</td>
<td>101</td>
<td>1</td>
<td>0.9</td>
<td>5500</td>
<td>5368.30</td>
</tr>
<tr>
<td>20</td>
<td>120</td>
<td>121</td>
<td>1</td>
<td>0.9</td>
<td>7200</td>
<td>9790.90</td>
</tr>
</tbody>
</table>

6. Conclusion

This paper proposes the application of Second Order Cone Programming (SOCP) and Monte Carlo simulation for solving the stochastic Time-Cost Tradeoff Problem (TCTP), where activities are subjected to linear cost function and assumed to be exponentially distributed.

The main objective of the proposed model is to improve the project completion probability to a predefined desired value. First, the developed model reformulates the primary nonlinear formulation of single path TCTP to the compatible-form of SOCP problem; in addition a general algorithm based on path criticality index has been developed using Monte Carlo simulation to apply the SOCP approach for all paths, in order of their criticality indices.

A numerical example has been discussed to illustrate the details of proposed SOCP process. Also a study has been conducted using several test problems to investigate the performance of SOCP approach. Our computations indicate that the proposed SOCP approach is applicable, reliable and also time benefit for the developed TCTP.

Acknowledgment

This research was in part supported by a grant from IPM (No. 88900027) for the first author. The authors would like to thank the research council of K.N. Toosi University of Technology for supporting this research.

References

