Renin-Angiotensin System Blockage for Reduction of Plasma Adiponectin Level in Maintenance Hemodialysis Patients: A Randomized Controlled Trial

Saeed Mardani, 1 Maryam Heidari, 1 Hamid Nasri 2

Introduction. Plasma adiponectin level is markedly increased among patients on hemodialysis. This investigation aimed to evaluate the relationship between renin-angiotensin system blockade and serum adiponectin concentration in nondiabetic patients on hemodialysis.

Materials and Methods. This randomized double-blind controlled trial was conducted on a group of nondiabetic patients on regular hemodialysis. The first group received losartan, 12.5 mg twice per day for the 1st week, 25 mg twice per day during the 2nd week, and 75 mg/d from the 3rd week to the end of the 16th week. Patients of the control group received placebo. Blood samples from all of the patients were collected at the beginning and at the end of the study to measure serum adiponectin.

Results. Seventy-three hemodialysis patients were divided randomly into the losartan group (40 patients) and the control group (33 patients). The mean adiponectin level in all of the patients was 10.6 ± 3.9 µg/mL. A significant decrease of serum adiponectin level was observed after 4 months of treatment with losartan (8.86 ± 3.43 µg/mL for losartan group versus 10.71 ± 3.94 µg/mL for the control group; \(P = .04 \)). None of the patients had a serum potassium value greater than 5 mg/dL or hypotension during the intervention. There was no significant difference in serum potassium levels between the two groups.

Conclusions. The decrease in serum adiponectin level in nondiabetic patients on regular hemodialysis by losartan might offer a potential protective approach in these patients. Mechanisms responsible for this reduction remain to be investigated.

INTRODUCTION

Adiponectin is synthesized by white adipose tissue as a collagen-like protein. 1 Adiponectin plays an important role in the regulation of body weight, lipid metabolism, insulin sensitivity, and inflammatory response. 1, 2 Also, adiponectin was demonstrated to have anti-inflammatory and anti-atherogenic properties. Its anti-inflammatory effect is possibly conducted through the suppression and the attachment of monocytes to endothelial cells. 1-3 Plasma adiponectin levels were shown to be inversely related to plasma insulin level, leptin and triglyceride levels, and also body mass index. 2, 3 It is also associated with vascular function independent of insulin sensitivity. 2, 3

Recent findings have shown a protective function for adiponectin for the cardiovascular system, suggesting an inverse association with cardiovascular disease risks. 1-8 Plasma adiponectin level is dependent on kidney function, being
markedly increased among patients with kidney impairment, and also in patients with end-stage renal disease and those on regular hemodialysis.3-9 The underlying cause for the higher levels of circulating adiponectin in kidney disease patients is still unclear. It has been suggested that decreased renal clearance is the cause of increased plasma levels of adiponectin in patients with failing kidney function.1-8 While adiponectin might be a potential modulator of cardiovascular risk, epidemiological evidence has not consistently supported elevated levels being protective in hemodialysis patients.2-9

Data on the association between adiponectin and outcomes in chronic kidney failure patients are scarce. It has been shown that high serum adiponectin level predicts progression of end-stage kidney disease and mortality in type 1 diabetic patients.4,8,10-14 In kidney injury, some adipokines are involved through mediating endothelial dysfunction, triggering oxidative stress and inflammation, as well as stimulating renal sympathetic nervous activity, which diminishes cancellous bone but conversely increases cortical bone.4,8,10-14 Adipokines may also be involved in the development of renal anemia.2,4,8 Studies have shown that angiotensin II, as the main effector peptide of renin-angiotensin system,4,8,15 is implicated in the development of renal, cardiac, and vascular pathologies.16 Recent studies have explored the relationship between angiotensin II, renin-angiotensin system, and adiponectin level.15-21 One study has shown the beneficial effects of losartan (angiotensin II type 1 receptor blocker) on plasma adiponectin level in patients with diabetic nephropathy.21 This investigation was designed to find out the relationship between renin-angiotensin system blockade and serum adiponectin concentration in a group of nondiabetic patients on regular hemodialysis.

MATERIALS AND METHODS

Study Population

This randomized double-blind controlled trial (registered by the Iranian Registry of Clinical Trials, 2013112515555N1) was conducted on a group of nondiabetic patients on regular hemodialysis. The study was conducted at the hemodialysis section of Shahrekord University of Medical Sciences in 2013 for a period of 4 months. All enrolled patients were on hemodialysis 3 times a week for 4 hours using low-flux dialysis filters with polysulfone membranes and reverse osmosis purified water and bicarbonate-base dialysis solution. Exclusion criteria were presence of diabetes mellitus, active or chronic infection, and taking angiotensin-converting enzyme or renin-angiotensin blockers.22 Also, patients receiving antibiotics, corticosteroids, pentoxifylline, or nutritional supplements, including various vitamins except for folic acid, within 3 months prior to this trial, were excluded from the study.23

Measurement of Blood Pressure

Blood pressure was measured before each dialysis session and the results were recorded. It was measured on the right arm in a sitting position after at least 20 minutes rest with a mercury sphygmomanometer. Resting systolic blood pressures and 5th phase diastolic blood pressures were measured 3 times, while the participants were seated, and the 2nd and 3rd measurements were averaged.23-25 Hypertension was defined as systolic blood pressure of 130 mm Hg and higher or diastolic blood pressure of 85 mm Hg and higher.23-25

Study Protocol

The patients were assigned into 2 groups. The first group received losartan (purchased from Razak Co, Iran), 12.5 mg twice per day for the 1st week, 25 mg twice per day during the 2nd week, and 75 mg/d (50 mg in the morning and 25 mg for the evening) from the 3rd week to the end of the 16th week. Patients of the control group received placebo in the same divisions. Blood samples from all patients were collected at the beginning and at the end of the study to measure plasma adiponectin. To avoid hypotension, other antihypertensive drugs were decreased or replaced with losartan (losartan group) during the treatment, especially when the dose of losartan increased as per the study protocol. During the 16 weeks of the study, serum potassium levels were checked every 2 weeks to avoid hyperkalemia. Blood pressure was also checked intensively before each dialysis session to avoid hypotension. After the end of 4 months, fasting serum samples were obtained to measure plasma adiponectin level. Body mass index was calculated as weight divided by squared height (kg/m2).
Laboratory Analysis

Blood samples were taken after a long dialysis-free weekend interval before the next hemodialysis, at 07:30 AM after a minimum 8-hour overnight fast to avoid the circadian and feeding impact on serum adiponectin fluctuations. Prior to the study and after intervention, serum adiponectin was measured in all of the patients by an enzyme-linked immunosorbent assay method, using the kits and protocol from Oegenium Laboratories (AviBion Human Adiponectin ELISA Kit, Helsinki, Finland). Blood urea nitrogen (BUN) and serum creatinine, potassium, sodium, calcium, and phosphorus were measured using standard kits and was done with standard automated techniques.

Ethics

The research protocol followed the tenets of the Declaration of Helsinki and Good Clinical Practice guidelines. Informed consent was obtained the participants and the protocol was approved by the ethics committee of Shahrekord University of Medical Sciences.

Statistical Analysis

Results were expressed as mean ± standard deviation and comparisons were considered significant when the P value was less than .05. The independent t test was used for comparison of continuous variables between the two groups. Data were analyzed using the SPSS software (Statistical Package for the Social Sciences, version 16.0, SPSS Inc, Chicago, Ill, USA).

RESULTS

Seventy-three nondiabetic hemodialysis patients (33 women and 44 men) were divided randomly into the losartan group (40 patients) and the control group (33 patients). The age range of the patients was from 13 to 91 years. Table 1 illustrates the patients’ characteristics before intervention. The mean adiponectin level in all of the patients was $10.6 \pm 3.9 \mu g/mL$ (range, $0.32 \mu g/mL$ to $17.41 \mu g/mL$). Table 2 shows the significant decrease of serum adiponectin level after 4 months of treatment with losartan ($8.86 \pm 3.43 \mu g/mL$ for losartan group versus $10.71 \pm 3.94 \mu g/mL$ for the control group; $P = .04$), as compared with those in the control group. None of the patients had a serum potassium value greater than 5 mg/dL. None of the patients had hypotension during the intervention. There was no significant difference in serum potassium levels between the two groups. The Figure shows serum potassium fluctuations in the two groups. Table 3 shows the hemoglobin levels and KT/V values before and after treatment with losartan. There was no significant difference in KT/V before and after the treatment ($P = .29$).

Table 1. Clinical and Demographic Characteristics of Nondiabetic Hemodialysis Patients Before Intervention*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Losartan Group (n = 40)</th>
<th>Control Group (n = 33)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>59.65 ± 19.02</td>
<td>53.94 ± 20.90</td>
<td>.93</td>
</tr>
<tr>
<td>Male sex, %</td>
<td>55</td>
<td>54</td>
<td>.97</td>
</tr>
<tr>
<td>Body weight, kg</td>
<td>59.86 ± 13.40</td>
<td>56.58 ± 15.39</td>
<td>.33</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>3.85 ± 22.42</td>
<td>3.99 ± 21.31</td>
<td>.22</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>123.5 ± 21.90</td>
<td>125.45 ± 22.37</td>
<td>.71</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>69.50 ± 9.59</td>
<td>71.21 ± 10.20</td>
<td>.46</td>
</tr>
<tr>
<td>Serum sodium, mg/dL</td>
<td>140.15 ± 2.87</td>
<td>141.88 ± 2.30</td>
<td>.007</td>
</tr>
<tr>
<td>Serum potassium, mg/dL</td>
<td>4.84 ± 0.56</td>
<td>5.16 ± 0.79</td>
<td>.06</td>
</tr>
<tr>
<td>Serum calcium, mg/dL</td>
<td>8.92 ± 0.55</td>
<td>9.09 ± 0.54</td>
<td>.20</td>
</tr>
<tr>
<td>Serum phosphorus, mg/dL</td>
<td>5.31 ± 1.16</td>
<td>4.88 ± 1.07</td>
<td>.10</td>
</tr>
</tbody>
</table>

*Values are mean ± standard deviation, except for sex distribution, which is percentage.

Table 2. Adiponectin Level Before and After Treatment With Losartan*

<table>
<thead>
<tr>
<th>Adiponectin</th>
<th>Losartan Group (n = 40)</th>
<th>Control Group (n = 33)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before treatment, µg/mL</td>
<td>10.52 ± 3.72 (0.3 to 17.4)</td>
<td>10.60 ± 4.12 (1.0 to 16.9)</td>
<td>.93</td>
</tr>
<tr>
<td>After treatment, µg/mL</td>
<td>8.86 ± 3.43 (0.5 to 15.0)</td>
<td>10.71 ± 3.94 (1.0 to 16.9)</td>
<td>.04</td>
</tr>
</tbody>
</table>

*Values are mean ± standard deviation (range).
DISCUSSION

This study documented a decline in serum adiponectin level after 4 months of losartan therapy. To evaluate the effects of adiponectin on appearance of protein-energy wasting, Kaynar and colleagues examined 150 patients with chronic kidney disease. They found an elevated level of adiponectin in hemodialysis, predialysis, and peritoneal dialysis patients in comparison to their control group. They showed a significant positive correlation between presence of protein-energy wasting and serum adiponectin level. They concluded that high serum adiponectin level might have a role in the development of protein-energy wasting among dialysis patients. Recently, Okuno and colleagues conducted a study to assess the possible role of adiponectin in mineral and bone disorders of dialysis patients. The study conducted on 114 Japanese male hemodialysis patients. They found a significant positive correlation between plasma adiponectin and serum N-telopeptide of type I collagen. They concluded that increased levels of serum adiponectin were associated with a decrease in bone mineral density in male hemodialysis patients. Furthermore, adiponectin may play a role in bone and mineral disorder, possibly in bone resorption of patients on dialysis. Likewise, in a study on 44 hemodialysis patients, Lee and colleagues found that plasma adiponectin level was significantly higher in malnourished patients than in well-nourished patients. They concluded that plasma adiponectin level reflected the nutritional-inflammation status of hemodialysis patients and also adiponectin might also be accompanied with dyslipidemia, insulin resistance, and the inflammatory response in these patients. To examine the association between plasma adiponectin and mortality in the earlier stages of chronic kidney disease, Menon and associates conducted a study with a 10-year follow-up and found that high, rather than low, plasma adiponectin concentration was associated with increased mortality in patients with chronic kidney disease stages 3 to 4. Recent studies suggest that in patients with nondiabetic chronic kidney disease, elevated adiponectin may be a novel predictor for chronic kidney disease progression in men. Furthermore, it has been proposed that adiponectin enhances energy expenditure, and high plasma adiponectin levels might not be a valuable marker in chronic kidney disease.

Hence, it seems that any attempts to decrease the adiponectin level may influence the survival of hemodialysis patients. In a study on 80 patients with type 2 diabetic nephropathy who were randomly divided into 2 groups for losartan and amlodipine, Gou and colleagues found declines in fasting insulin and adiponectin levels by losartan therapy. Similar results were also obtained in our investigation. However, few studies have published regarding the capacity of angiotensin receptor blockers to increase or decrease the plasma adiponectin concentration. To the best of our knowledge, this is the first double-blind clinical trial on the effect of losartan on adiponectin level in hemodialysis patients. We assumed that decreased plasma adiponectin by losartan was a beneficial effect in hemodialysis patients. It has been found that increased adiponectin levels are strongly associated with all-cause and cardiovascular mortality in patients with chronic kidney failure.

Table 3. Hemoglobin Levels and KT/V Values of All Participants Before and After Treatment With Losartan*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Before Treatment</th>
<th>After Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin, g/dL</td>
<td>10.51 ± 1.96 (6.6 to 15.3)</td>
<td>9.35 ± 1.69 (5.7 to 14.1)</td>
</tr>
<tr>
<td>KT/V</td>
<td>1.43 ± 0.32 (0.5 to 2.7)</td>
<td>1.48 ± 0.22 (0.7 to 1.9)</td>
</tr>
</tbody>
</table>

*Values are mean ± standard deviation (range).
or hemodialysis patients. However, further studies are required to confirm this finding and to reveal the underlying mechanisms.

CONCLUSIONS

Our results demonstrate for the first time that adiponectin level in nondiabetic patients on regular hemodialysis is decreased by the angiotensin receptor blockers, which might offer a protective role in hemodialysis patients. The mechanisms responsible for this decrement during short-course treatment with losartan remain to be investigated.

CONFLICT OF INTERESTS

None declared.

FINANCIAL SUPPORT

This study was granted by Shahrekord University of Medical Sciences (Grant No, 1302).

REFERENCES

44. Khodadadi S. Role of Herbal Medicine in Boosting Immune System. Immunopathol Persa. 2015;1:e01.

Correspondence to:
Hamid Nasri, MD
Division of Nephropathology, Department of Nephrology, Isfahan University of Medical Sciences, Hezar-Jarib Ave, Isfahan, Iran
Tel: +98 311 669 2609
E-mail: hamidnasri@med.mui.ac.ir

Received November 2014
Revised September 2015
Accepted October 2015